Run MATRIX procedure: ***************** PROCESS Procedure for SPSS Version 4.0 ***************** Written by Andrew F. Hayes, Ph.D. www.afhayes.com Documentation available in Hayes (2022). www.guilford.com/p/hayes3 ************************************************************************** Model : 4 Y : SMF X : OSWB M1 : PC M2 : SC M3 : SD Sample Size: 337 ************************************************************************** OUTCOME VARIABLE: PC Model Summary R R-sq MSE F df1 df2 p .0266 .0007 9.5684 .2364 1.0000 335.0000 .6271 Model coeff se t p LLCI ULCI constant 20.8434 .9022 23.1036 .0000 19.0688 22.6180 OSWB -.0254 .0522 -.4862 .6271 -.1282 .0774 Standardized coefficients coeff OSWB -.0266 Covariance matrix of regression parameter estimates: constant OSWB constant .8139 -.0463 OSWB -.0463 .0027 ************************************************************************** OUTCOME VARIABLE: SC Model Summary R R-sq MSE F df1 df2 p .0036 .0000 26.0004 .0044 1.0000 335.0000 .9472 Model coeff se t p LLCI ULCI constant 15.4046 1.4872 10.3584 .0000 12.4793 18.3300 OSWB .0057 .0861 .0663 .9472 -.1637 .1751 Standardized coefficients coeff OSWB .0036 Covariance matrix of regression parameter estimates: constant OSWB constant 2.2117 -.1258 OSWB -.1258 .0074 ************************************************************************** OUTCOME VARIABLE: SD Model Summary R R-sq MSE F df1 df2 p .3193 .1019 4.1846 38.0247 1.0000 335.0000 .0000 Model coeff se t p LLCI ULCI constant 2.2908 .5966 3.8396 .0001 1.1172 3.4644 OSWB .2130 .0345 6.1664 .0000 .1451 .2810 Standardized coefficients coeff OSWB .3193 Covariance matrix of regression parameter estimates: constant OSWB constant .3560 -.0203 OSWB -.0203 .0012 ************************************************************************** OUTCOME VARIABLE: SMF Model Summary R R-sq MSE F df1 df2 p .3893 .1516 11.5205 14.8264 4.0000 332.0000 .0000 Model coeff se t p LLCI ULCI constant 7.1385 1.6888 4.2271 .0000 3.8165 10.4606 OSWB -.2460 .0605 -4.0660 .0001 -.3650 -.1270 PC .3264 .0610 5.3471 .0000 .2063 .4465 SC .0988 .0367 2.6948 .0074 .0267 .1709 SD .3394 .0917 3.7018 .0003 .1591 .5198 Standardized coefficients coeff OSWB -.2170 PC .2753 SC .1373 SD .1997 Covariance matrix of regression parameter estimates: constant OSWB PC SC SD constant 2.8520 -.0503 -.0753 -.0146 -.0341 OSWB -.0503 .0037 -.0001 .0000 -.0018 PC -.0753 -.0001 .0037 -.0003 .0008 SC -.0146 .0000 -.0003 .0013 -.0002 SD -.0341 -.0018 .0008 -.0002 .0084 ************************** TOTAL EFFECT MODEL **************************** OUTCOME VARIABLE: SMF Model Summary R R-sq MSE F df1 df2 p .1600 .0256 13.1123 8.8010 1.0000 335.0000 .0032 Model coeff se t p LLCI ULCI constant 16.2412 1.0561 15.3783 .0000 14.1637 18.3186 OSWB -.1814 .0612 -2.9667 .0032 -.3017 -.0611 Standardized coefficients coeff OSWB -.1600 Covariance matrix of regression parameter estimates: constant OSWB constant 1.1154 -.0635 OSWB -.0635 .0037 ************** TOTAL, DIRECT, AND INDIRECT EFFECTS OF X ON Y ************** Total effect of X on Y Effect se t p LLCI ULCI c_cs -.1814 .0612 -2.9667 .0032 -.3017 -.0611 -.1600 Direct effect of X on Y Effect se t p LLCI ULCI c'_cs -.2460 .0605 -4.0660 .0001 -.3650 -.1270 -.2170 Indirect effect(s) of X on Y: Effect BootSE BootLLCI BootULCI TOTAL .0646 .0348 -.0008 .1359 PC -.0083 .0205 -.0518 .0318 SC .0006 .0087 -.0174 .0182 SD .0723 .0264 .0258 .1296 Completely standardized indirect effect(s) of X on Y: Effect BootSE BootLLCI BootULCI TOTAL .0570 .0304 -.0007 .1194 PC -.0073 .0180 -.0445 .0285 SC .0005 .0076 -.0153 .0160 SD .0638 .0229 .0231 .1129 *********************** ANALYSIS NOTES AND ERRORS ************************ Level of confidence for all confidence intervals in output: 95.0000 Number of bootstrap samples for percentile bootstrap confidence intervals: 5000 ------ END MATRIX -----