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Abstract 
Groceries prices often experience fluctuations in several regions in Indonesia, such as East Java 
Province and one of the commodities is chilies, both red chilies and rawit chilies. Predictive steps 
that utilize machine learning such as Long-Short Term Memory (LSTM) can be taken to estimate 
the next price of chili with expectations that the appropriate strategy can be taken by the 
authorities. LSTM is a network that developed from RNN networks in previous times by offering 
a longer cell memory so that more information can be stored. This research focuses on finding 
out whether the LSTM network can be applied to the case of chili price prediction and what 
architecture and hyperparameter configuration is appropriate for this case. For this reason, the 
experimental method is used by testing several predetermined variables to obtain the right 
architecture and hyperparameter configuration. The results of this research show that the LSTM 
network can be applied in this case and the architecture and best hyperparameter configuration 
obtained are the same for both types of chilies, namely red chilies and rawit chilies. For red chili, 
the best RMSE value that can be produced is 1751.890 and 1888.741 for rawit chili. 
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Abstrak 
Harga bahan pangan sering terjadi fluktuasi di beberapa daerah di Indonesia seperti di Provinsi 
Jawa Timur dan salah satu komoditasnya yaitu cabai, baik cabai merah maupun cabai rawit. 
Langkah prediksi yang memanfaatkan pembelajaran mesin seperti Long-short Term Memory 
(LSTM) dapat ditempuh untuk memperkirakan harga cabai selanjutnya dengan harapan strategi 
yang tepat dapat diambil oleh pihak yang berwenang. LSTM merupakan bentuk jaringan hasil 
pengembangan dari jaringan RNN pada masa-masa sebelumnya dengan menawarkan memori 
sel yang lebih panjang sehingga lebih banyak infromasi yang dapat disimpan. Penelitian ini 
berfokus untuk mengetahui apakah jaringan LSTM dapat diterapkan pada kasus prediksi harga 
cabai serta arsitektur dan konfigurasi hyperparameter apa yang tepat untuk kasus ini. Untuk itu, 
metode eksperimen ditempuh dengan menguji beberapa variabel yang telah ditentukan untuk 
mendapatkan arsitektur serta konfigurasi hyperparameter yang tepat. Hasil dari penelitian ini 
menunjukkan bahwa jaringan LSTM dapat diterapkan pada kasus ini dan arsitektur serta 
konfigurasi hyperparameter terbaik yang didapat itu sama untuk kedua jenis cabai yaitu cabai 
merah dan cabai rawit. Pada data cabai merah nilai RMSE terbaik yang dapat dihasilkan yaitu 
1751,890 dan 1888,741 pada data cabai rawit. 
 
Kata Kunci: LSTM, Prediksi, RMSE, Harga Cabai, Bahan Pangan 

1. INTRODUCTION 

The demand for basic commodities in Indonesia is highly significant for its population. Particularly, 
the prices of these basic commodities frequently experience instability or fluctuation, as is evident 
with chili, a key commodity. Yanwardhana, reporting in CNBC Indonesia, noted that the average 
price of chili in Indonesia can reach Rp 106,764 per kilogram, with prices even exceeding Rp 
150,000 in some regions (Yanwardhana, 2022). 
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In East Java Province, the price of red chili soared by 241.48%, increasing from Rp 24,840 per 
kilogram to Rp 84,823 per kilogram as of June 7, 2022. A similar increase was observed in red 
chili prices, which rose approximately 78.58%. 
 
Such instability can be attributed to several factors, including weather conditions, fuel prices, and 
significant festive seasons. As quoted from CNN Indonesia, the price of chili rose ahead of the 
Ramadan period from Rp 55,000 per kilogram to Rp 60,000 per kilogram (CNN Indonesia, 2022). 
 
With advancements in computational technology, predictive models leveraging machine learning 
can be developed. One widely used model for prediction and forecasting is the Long Short-Term 
Memory (LSTM). LSTM is a type of artificial neural network categorized under Recurrent Neural 
Networks (RNNs). RNNs are capable of addressing time-series data problems due to their 
inherent “memory” within their cells. However, RNNs face limitations such as the vanishing 
gradient problem, which slows training progress. LSTM, introduced in the 1990s, was developed 
to address this challenge by providing longer memory capabilities (Yadav et al., 2020). 
 
Hochreiter and Schmidhuber in their study highlighted that LSTM resolves issues arising from 
Back-Propagation Through Time (BPTT) and Real-Time Recurrent Learning (RTRL) algorithms, 
where error signals in these algorithms either blow up or vanish as they propagate backward in 
time. The former causes weight oscillation, while the latter extends model training duration 
significantly. LSTM is specifically designed to handle such errors, enabling the model to learn 
data spanning over 1,000 steps (Hochreiter & Schmidhuber, 1997). 
 
Several past studies have employed machine learning for prediction purposes. For instance, 
Chairurrachman I conducted research on PT Indofood CBP Sukses Makmur Tbk stock prices 
using the LSTM network. The study revealed that CNN-LSTM architecture achieved the best MAE 
value of 74.1365 (Chairurrachman, 2022). 
 
Additionally, research by Arfan and Lussiana compared LSTM and Support Vector Regression 
(SVR). Using stock prices from various companies as the dataset, their findings demonstrated 
that LSTM produced better accuracy than SVR, particularly for longer time-series data (Arfan & 
ETP, 2020). 
 
Similarly, Riyantoko et al. (2020) analyzed predictions for banking sector stock prices using the 
LSTM algorithm. This study examined the impact of varying epochs and optimization techniques 
on computation time, RMSE, and loss levels. It compared the optimizations Adam, RMSprop, and 
SGD, finding that Adam and RMSprop achieved similar accuracy levels ranging from 89% to 95%, 
while SGD lagged behind at 49% to 61%. Additionally, changing the number of epochs affected 
computation time but had little impact on the resulting RMSE. 
 
Another relevant study by Syaidah et al. (2020) focused on predicting staple food prices in Jakarta 
using Artificial Neural Networks (ANN). Their results indicated that the chosen alpha and threshold 
values influenced accuracy, with lower values enhancing accuracy. 
 
Further, a study conducted by Suradiradja (2022), titled “Machine Learning Algorithms: Multi-
Layer Perceptron and Recurrent Neural Network for Predicting Large Red Chili Prices in 
Tangerang City,” showed notable results. The study achieved a low MAPE value of 3.79%, 
indicating significant accuracy, using the Multi-Layer Perceptron algorithm. However, it compared 
only two algorithms: Recurrent Neural Networks and Multi-Layer Perceptron. 
 
Currently, LSTM algorithms are frequently used in research for time-series data predictions, owing 
to their superior accuracy compared to earlier algorithms. The primary focus of this study is to 
implement LSTM, determine its architecture, and optimize several hyperparameters for effective 
data preparation and training for predicting chili prices in East Java Province. 
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2. METHODS 

2.1 Long Short-Term Memory (LSTM) 

LSTM, or Long Short-Term Memory, is a type of artificial neural network architecture commonly 
applied in cases involving time-series data, text, video, or audio. LSTM represents a significant 
advancement over Recurrent Neural Networks (RNNs), which are ineffective at handling long-
term dependencies due to their lack of persistent "memory" cells. As a result, LSTM outperforms 
RNNs in such scenarios. Figure 1 illustrates the structure of an LSTM cell. 
 

 
Figure 1 LSTM Structure (Qiu et al., 2020a) 

Based on Figure 1, there are several components, often referred to as "gates," within an LSTM 
cell (Saxena, 2024): 

2.1.1 Forget Gate 

This gate, represented by a dashed box labeled "Forget Gate," determines whether the 
information from the previous state should be retained or discarded. The forget gate computes 
the hidden state from the previous step and the current input state using a Sigmoid activation 
function. 

2.1.2 Input Gate 

This gate, also represented by a dashed box labeled "Input Gate," evaluates whether newly 
incoming information is important. If deemed important, the information is added to the current 
state; otherwise, it is discarded. The input gate involves two computations: the input gate value 
using the Sigmoid activation function and the memory cell candidate value using the Tanh 
activation function. 

2.1.3 Output Gate 

This gate, shown as a dashed box labeled "Output Gate," determines the output value based on 
the processed information from the forget and input gates. The value of the output gate is 
computed, and the result becomes the value for the next hidden state. 
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2.2 Tools 

The tools utilized in this study include both software and hardware, described as follows: 

2.2.1 Python Programming Language 

Python is frequently used in machine learning, data analysis, and various aspects of computer 
science. It can execute without the need for compilation, unlike many other programming 
languages (Sanner, 1999). Additionally, Python offers a package manager known as PIP, 
which provides access to numerous libraries related to computer science. 

2.2.2 TensorFlow and Keras 

TensorFlow is one of the most renowned libraries in the machine learning community. It is used 
for building computational models applicable in pattern recognition, image recognition, prediction, 
and more. TensorFlow is popular due to its multi-level abstraction, flexible coding, and 
comprehensive ecosystem (Gifari & Widya, 2020). 
 
Keras API is one limitation of TensorFlow is its steep learning curve for beginners. To address 
this, the Keras API was developed to simplify building, training, and evaluating computational 
models. Keras is built on top of TensorFlow and focuses on user-friendly machine learning 
implementations (Dhadse, 2021). 

2.2.3 Hardware 

The hardware used includes a notebook equipped with a GPU (Graphics Processing Unit). 
Machine learning benefits from the GPU’s Compute Unified Device Architecture (CUDA) to 
enhance computational performance. CUDA is a parallel computing platform developed by 
NVIDIA (Oh, 2012). 
 

2.3 Experimental Methodology 

The experimental method involves investigating relationships between variables. Variables in the 
experimental methodology are categorized as follows: 
a) Independent variables: These are manipulated to observe the response of dependent 

variables under specific scenarios. 
b) Control variables: These remain constant throughout the experiment to neutralize their 

impact on dependent variables. 
c) Dependent variables: These are observed to understand the effect of changes in 

independent variables. 
 
The flow diagram illustrating the experimental stages in this research is presented in Figure 2. 
The steps are as follows (Campbell & Stanley, 1963): 

2.3.1 Data Collection and Preparation 

In this phase, the dataset for training is collected and prepared as input for the LSTM model. This 
process involves several stages such as cleaning, filling in missing data, normalizing using 
MinMaxScaling, and splitting the dataset into training and testing data. 

2.3.2 Experiment Design (Defining Variables) 

This stage ensures that the experiment is conducted consistently and with focus, determining the 
variables relevant to the execution of the experiment. 
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2.3.3 Execution and Data Logging 

The experiment is carried out according to the scenarios planned in the previous stage. The 
resulting experimental data is recorded for later analysis. 

2.3.4 Analysis and Discussion of Experimental Results 

The recorded data is analyzed to identify which scenario produces the best results based on 
evaluation metrics. Additionally, this step explains the findings of the conducted experiments. 

2.3.5 Conclusion Drawing 

Conclusions are drawn to succinctly summarize the experimental results, making them easier to 
comprehend and addressing the problem statements identified. 
 

 
Figure 2 Experimental Workflow Diagram 

2.4 Data collection and preparation 

The dataset used in this study consists of chili price data from East Java Province over 
approximately three years (January 1, 2020 – June 1, 2023). It includes two types of commodities: 
red chili and bird’s eye chili. This price data was obtained from the PIHPS Nasional website 
(National Strategic Food Price Information Center), managed by Bank Indonesia (Rahmadini et 
al., 2023). The dataset is presented in a .xlsx file format containing daily chili prices in East Java. 
Figure 3 shows the price trends of red chili and bird’s eye chili in East Java from January 1, 2020, 
to June 1, 2023. 
 

 
Figure 3 Red Chili and Bird’s Eye Chili Price Trends 

The blue line in the graph represents red chili prices, while the orange line represents bird’s eye 
chili prices. The x-axis indicates the sequence of dates from the start to the end of data collection, 
and the y-axis represents the actual prices of red and bird’s eye chili on their respective dates. 
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The total chili price data collected for the specified date range amounted to 894 records. However, 
this figure includes invalid data, such as missing or non-numeric values (e.g., a “-” character). 
Therefore, data cleaning was conducted to eliminate such anomalies, resulting in 851 valid data 
entries. 
 
The next preparation step involved filling or replacing missing or undesirable data points. This 
step is crucial as predictive processes require uniform data intervals. For example, if the interval 
between data points is one day, all intervals should consistently adhere to this pattern. In this 
dataset, missing entries caused inconsistencies in intervals, either due to unwanted data values 
or entirely missing values on specific dates. For instance, no reports were available on Saturdays 
and Sundays because the PIHPS Nasional website does not update data on these days. 
 
Several methods can be applied to address missing data, including using the value from the 
previous date, calculating the average of the values before and after the missing data, or using 
the value from the next date, among others. In this study, missing data was filled using the value 
from the preceding day. This method was chosen because the website updates data daily. Using 
the average of preceding and succeeding values would be impractical as succeeding values were 
not always available at the time of calculation. This data-filling process resulted in 1,250 values, 
which were then further processed. 
 
After data cleaning and filling missing values, the next preparation step was data normalization. 
Normalization aims to optimize the model's training process. A commonly used method for time-
series dataset normalization is Min-Max Scaling. This method adjusts the data range to a specific 
interval, typically between 0 and 1, though other ranges can also be used if necessary (Maity, 
2021). The Min-Max Scaling equation is shown in Equation 1. 
 

𝑦 = 	
𝑥	 −	𝑥!"#

𝑥!$% 	− 	𝑥!"#
 (1) 

 
In this equation, 𝒚 represents the normalized value within the desired range, typically from 0 to 1. 
The variable 𝒙 is the original value from the dataset, while 𝒙𝒎𝒊𝒏 and 𝒙𝒎𝒂𝒙 are the minimum and 
maximum values in the dataset, serving as the lower and upper bounds, respectively. By 
transforming all data points using this formula, the values are rescaled proportionally within the 
specified range, optimizing the dataset for machine learning algorithms by reducing the risk of 
bias due to varying magnitudes in data points. This process ensures more uniform data 
distribution, simplifying the model’s task of processing data during training. 
 
The next step involved splitting the dataset into training and testing data. The split is typically 
based on a specific ratio between training and testing datasets. A common ratio used is 80:20, 
where 80% of the data is used to train the model, while the remaining 20% is reserved for testing 
its performance. With a total of 1,250 data points, this ratio yielded 1,000 entries for training and 
250 entries for testing. However, in this study, the training-to-testing ratio was treated as an 
independent variable to be evaluated and discussed further in subsequent sections. 
 
After splitting the data into training and testing sets, the training data was further processed into 
input-label pairs. Each input consists of a sequence of values of a certain length, referred to as 
the sequence length. The label generally consists of a single value. 
 
For example, if the sequence length is 7, the values from Day 1 to Day 7 form one sequence or 
input, while the label is the value on Day 8. This sequence formation process shifts sequentially, 
with each new sequence beginning at the next data point in the dataset. For instance, the second 
sequence consists of values from Day 2 to Day 8, with the label being the value on Day 9, and so 
on until all training data has been processed. However, in this study, the sequence length was 
not fixed as it was considered an independent variable to be further examined. An example of the 
final format of the sequence and label formation for training data is shown in Figure 4. 
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Figure 4 Example of Sequence Formation and Labeled Data from Training Data 

2.5 Experimental Scenario Design 

The design of experimental scenarios aims to achieve valid, relevant, and accountable results. 
Additionally, this design simplifies the experimental process and ensures that it remains 
controlled. In this study, seven scenarios were designed, applied to both types of chili data, 
namely red chili and bird’s eye chili. The first three scenarios focus on LSTM architecture, as 
detailed in Tables 1, 2, and 3, while the remaining four scenarios relate to data, training, and 
model optimization, as explained in Tables 4, 5, 6, and 7. 

Table 1 Scenario 1 (Number of Units) 

No. Number 
of Units 

Hidden 
Layers 

Activation 
Function 

Training 
Data 
Ratio 

Sequence 
Length Epochs Model 

Optimization 
1 10 0 Linear 80:20 30 30 Adam 
2 20 0 Linear 80:20 30 30 Adam 
3 30 0 Linear 80:20 30 30 Adam 
4 40 0 Linear 80:20 30 30 Adam 
5 50 0 Linear 80:20 30 30 Adam 
6 60 0 Linear 80:20 30 30 Adam 
7 70 0 Linear 80:20 30 30 Adam 
8 80 0 Linear 80:20 30 30 Adam 
9 90 0 Linear 80:20 30 30 Adam 
10 100 0 Linear 80:20 30 30 Adam 

Table 2 Scenario 2 (Hidden Layers) 

No. Number 
of Units 

Hidden 
Layers 

Activation 
Function 

Training 
Data 
Ratio 

Sequence 
Length Epochs Model 

Optimization 
1 50 0 Linear 80:20 30 30 Adam 
2 50 1 Linear 80:20 30 30 Adam 
3 50 2 Linear 80:20 30 30 Adam 
4 50 3 Linear 80:20 30 30 Adam 

Table 3 Scenario 3 (Activation Function) 

No. Number 
of Units 

Hidden 
Layers 

Activation 
Function 

Training 
Data 
Ratio 

Sequence 
Length Epochs Model 

Optimization 
1 50 0 Linear 80:20 30 30 Adam 
2 50 0 Relu 80:20 30 30 Adam 
3 50 0 Leaky Relu 80:20 30 30 Adam 
4 50 0 SELU 80:20 30 30 Adam 
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Table 4 Scenario 4 (Training Data Ratio) 

No. Number 
of Units 

Hidden 
Layers 

Activation 
Function 

Training 
Data 
Ratio 

Sequence 
Length Epochs Model 

Optimization 
1 50 0 Linear 70:30 30 30 Adam 
2 50 0 Linear 80:20 30 30 Adam 
3 50 0 Linear 90:10 30 30 Adam 

Table 5 Scenario 5 (Sequence Length) 

No. Number 
of Units 

Hidden 
Layers 

Activation 
Function 

Training 
Data 
Ratio 

Sequence 
Length Epochs Model 

Optimization 
1 50 0 Linear 80:20 7 30 Adam 
2 50 0 Linear 80:20 14 30 Adam 
3 50 0 Linear 80:20 21 30 Adam 
4 50 0 Linear 80:20 30 30 Adam 

Table 6 Scenario 6 (Epoch) 

No. Number 
of Units 

Hidden 
Layers 

Activation 
Function 

Training 
Data 
Ratio 

Sequence 
Length Epochs Model 

Optimization 
1 50 0 Linear 80:20 30 10 Adam 
2 50 0 Linear 80:20 30 20 Adam 
3 50 0 Linear 80:20 30 30 Adam 
4 50 0 Linear 80:20 30 40 Adam 
5 50 0 Linear 80:20 30 50 Adam 

Table 7 Scenario 7 (Model Optimization) 

No. Number 
of Units 

Hidden 
Layers 

Activation 
Function 

Training 
Data 
Ratio 

Sequence 
Length Epochs Model 

Optimization 
1 50 0 Linear 80:20 30 30 Adam 
2 50 0 Linear 80:20 30 30 RMSprop 
3 50 0 Linear 80:20 30 30 SGD 

 
Scenario 1 evaluates the number of LSTM units (independent variable) with varying values, while 
other variables are treated as control variables, kept constant across all trials in this scenario. 
Scenario 2 examines the number of hidden layers between the input and output layers, testing 
variations of 1, 2, and 3 layers, as well as a condition without hidden layers. Other variables 
remain as controls. Scenario 3 focuses on testing different activation functions applied to the 
output layer, including Linear, Relu, Leaky Relu, and SELU. 
 
Scenario 4 investigates aspects of data, training, and model optimization by treating the training-
to-testing ratio as an independent variable with several values tested. Scenario 5 evaluates the 
sequence length with various values such as 7, 14, 21, and 30, representing time periods of 1 
week, 2 weeks, 3 weeks, and 1 month, respectively. Scenario 6 tests the number of epochs run 
during training to observe its effect on model performance. The final scenario, Scenario 7, tests 
various model optimization methods, including Adam, RMSprop, and SGD, which are commonly 
used in machine learning to enhance model performance. 

2.6 Evaluation metrics 

Evaluation metrics are measures used to assess the outcomes of an experiment. In this study, a 
key metric is the accuracy level of a model. Additionally, the training duration of a model is 



 
 JISKA (Jurnal Informatika Sunan Kalijaga) 
41  ■ Vol. 10, No. 1, JANUARY, 2025: 33 – 47 

 
This article is distributed following Atribution-NonCommersial CC BY-NC as stated on 
https://creativecommons.org/licenses/by-nc/4.0/. 

considered to evaluate performance. However, accuracy has greater significance compared to 
training duration, which is only considered further when models yield similar accuracy levels. 
These evaluation metrics also serve as dependent variables in this experiment. Below are the 
metrics used in this study: 

2.6.1 Root Mean Squared Error (RMSE) 

The Root Mean Squared Error (RMSE) equation measures the discrepancy between the 
predicted values and actual values in a dataset. It is calculated by first squaring the differences 
between each actual value (𝑦") and its corresponding predicted value (𝑦+(	), then summing these 
squared differences across all data points. This total is divided by the number of data points (𝑛) 
to calculate the mean squared error, and finally, the square root is taken to obtain the RMSE. A 
smaller RMSE value indicates better model performance, as it reflects a lower prediction error. 
 

𝑅𝑀𝑆𝐸 =	.
∑ (𝑦" −	𝑦+(),#
"-.

𝑛  (2) 

2.6.2 Mean Absolute Error Percentage (MAPE) 

The Mean Absolute Error Percentage (MAPE) equation measures prediction error as a 
percentage, making it easier to interpret across datasets of different scales. For each data point, 
the absolute difference between the actual value (𝑦" 	) and the predicted value (𝑦+(	) is calculated, 
divided by the actual value (𝑦" 	), and multiplied by 100 to convert it into a percentage. These 
percentages are then averaged across all data points (𝑛) to yield the MAPE. Lower MAPE values 
indicate higher model accuracy and better prediction performance. 
 
 

𝑀𝐴𝑃𝐸 =	
1
𝑛	56

𝑦" −	𝑦+(
𝑦"

6 ∙ 100
#

"-.

 (3) 

2.6.3 Training Duration 

The final evaluation metric used in this experiment is training duration. It refers to the time taken 
for the LSTM model to complete training, from the first epoch to the last. Training duration is 
measured in seconds, starting right before the training process begins and ending upon its 
completion. 

2.7 Experiment Execution and Results Recording 

The experiment was conducted by running all scenarios sequentially, from the initial to the final 
scenario, for both red chili and bird’s eye chili data. Each independent variable value was tested 
three times, and the results of each test were recorded. The average RMSE value from the three 
tests was then calculated, and the lowest RMSE value was selected as the basis for comparing 
scenarios. 
 
The experiment results were automatically recorded each time a scenario was executed, saved 
in a .txt file format with columns separated by commas (","). This results recording process is 
illustrated in Figure 5. 
 
To facilitate the readability of the results, the data was transformed into a tabular format using 
spreadsheet software (Microsoft Excel) and appropriate column headers were added. Figure 6 
shows the experimental results in tabular format. 
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Figure 5 Experimental Results Recording 

 
Figure 6 Experimental Results in Tabular Format 

3. RESULTS AND DISCUSSION 

After running all scenarios, the best results (lowest averages) for each scenario, for both red chili 
and bird’s eye chili, are presented. The best results for red chili are shown in Table 8. The RMSE 
values across all scenarios range from 1600 to 1900, with the lowest RMSE observed in Scenario 
7 during RMSprop model optimization, resulting in an RMSE of 1635.065. Regarding MAPE, all 
scenarios achieved values below 4%, with the smallest MAPE also found in Scenario 7 during 
RMSprop optimization. 
 
The longest training duration occurred in Scenario 6 when testing the number of epochs, as it 
used the highest value of 50 epochs. However, the smallest average RMSE was observed in 
Scenario 6, at 1754.700. Conversely, Scenario 7, which had the lowest RMSE value, produced a 
higher average RMSE compared to Scenario 6. Table 9 compares the average RMSE values in 
Scenarios 6 and 7. In Scenario 7, the results of RMSprop optimization tests were inconsistent, as 
not all tests achieved low RMSE values (close to the minimum RMSE). As a result, the average 
RMSE in Scenario 7 was relatively high. On the other hand, the RMSE values in Scenario 6 were 
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more consistent, staying within the 1700 range, and thus yielded a lower average RMSE than 
Scenario 7. 

Table 8 Best Results for Red Chili Price Prediction 

No. Scenario Independent 
Variable 

Variable 
Value RMSE MAPE 

(%) 
Training 
Duration 

(s) 
Average 
RMSE 

1 Scenario 
1 

Number of 
LSTM Units 

70 1729.073 3.67% 18.527 1777.656 

2 Scenario 
2 

Hidden Layers 0 1663.543 3.21% 13.744 1781.956 

3 Scenario 
3 

Activation 
Function 

Linear 1861.336 3.90% 14.337 1953.674 

4 Scenario 
4 

Training Data 
Ratio 

80:20 1710.004 3.52% 10.886 1975.861 

5 Scenario 
5 

Sequence 
Length 

7 1932.669 3.93% 5.431 1923.455 

6 Scenario 
6 

Epochs 50 1739.348 3.52% 19.127 1754.700 

7 Scenario 
7 

Optimization 
Method 

RMSprop 1635.065 3.16% 14.777 1931.978 

Table 9 Comparison of Average RMSE Between Scenario 6 and Scenario 7 for Red Chili 
Price Prediction 

No. Scenario Independent 
Variable RMSE 1 RMSE 2 RMSE 3 Average 

RMSE 
1 Scenario 

6 
50 Epochs 1778.592 1746.161 1739.348 1754.700 

2 Scenario 
7 

RMSprop 
Optimization 

1987.332 1635.065 2173.538 1931.978 

Table 10 Best Results for Bird’s Eye Chili 
No. Scenario Independent 

Variable 
Independent 

Variable 
Value 

RMSE MAPE Training 
Duration 

Average 
RMSE 

1 Scenario 
1 

Number of 
Units 

80 1913.818 3.59 % 19.936 
seconds 

1969.866 

2 Scenario 
2 

Hidden 
Layers 

0 1929.001 3.55 % 11.222 
seconds 

2099.155 

3 Scenario 
3 

Activation 
Function 

Linear 2056.248 4.01 % 14.694 
seconds 

2104.328 

4 Scenario 
4 

Training 
Data Ratio 

90:10 1941.933 3.384 % 15.183 
seconds 

2067.900 

5 Scenario 
5 

Sequence 
Length 

7 1936.939 3.485 % 6.531 
seconds 

2061.045 

6 Scenario 
6 

Epochs 50 1837.712 3.419 % 22.351 
seconds 

1878.329 

7 Scenario 
7 

Model 
Optimization 

RMSprop 1834.365 3.423 % 15.001 
seconds 

1983.437 

 
Table 10 presents the best results for bird’s eye chili in each scenario. Across all scenarios, RMSE 
values for bird’s eye chili ranged higher than those for red chili, with values between 1800 and 
2000. The lowest RMSE occurred in Scenario 7 during RMSprop optimization testing. The 
smallest MAPE, however, was achieved in Scenario 4, during the 90:10 training-to-test data ratio 
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test, with a MAPE of 3.384. This indicates that MAPE does not always correlate with RMSE 
values. 
 
The training durations required for bird’s eye chili were similar to those for red chili. The longest 
duration for bird’s eye chili occurred in the 50-epoch test in Scenario 6, lasting 22.351 seconds. 
The training duration difference between the two datasets was only around 3 seconds, suggesting 
similar training time requirements for both data types. 
 
As with red chili, scenarios with the smallest RMSE values did not always result in the smallest 
average RMSE for bird’s eye chili. In Scenario 7, RMSprop optimization testing produced the 
lowest RMSE (1834.365), but the smallest average RMSE was observed in Scenario 6, during 
the 50-epoch test. The inconsistency of RMSE values in Scenario 7 contributed to a higher 
average RMSE. 

Table 11 Comparison of Average RMSE Between Scenario 6 and Scenario 7 for Bird’s 
Eye Chili Price Prediction 

No. Scenario Independent 
Variable 

RMSE 
1 RMSE 2 RMSE 

3 
Average 
RMSE 

1 Scenario 
1 

Number of Units 80 1913.818 3.59 % 19.936 
seconds 

2 Scenario 
2 

Hidden Layers 0 1929.001 3.55 % 11.222 
seconds 

 
Table 11 shows that the RMSE range from RMSprop optimization testing is quite broad, with a 
minimum value of 1834.365 and a maximum of 2174.004. In contrast, the RMSE range during 
the 50-epoch test was narrower, with a minimum of 1837.712 and a maximum of 1974.733. Based 
on this discussion, the scenario with the smallest average RMSE is Scenario 6 during the 50-
epoch test, for both red chili and bird’s eye chili. This variable configuration is shown in Table 6. 
Scenario 6 with 50 epochs was retested five times to confirm it as the best scenario. The retesting 
was performed for both chili types, and the results are shown in Table 12.  

Table 12 Re-Test Results for Scenario 6 Epoch 50 

No. Type of Chili RMSE MAPE Training 
Duration 

Average 
RMSE 

1 Red Chili (Cabai Merah) 1540.898 2.923 % 22.270 seconds 1751.690 
2 Bird's Eye Chili (Cabai 

Rawit) 
1816.318 3.503 % 28.906 seconds 1888.741 

 
Table 12 indicates that the retest results for Scenario 6 with 50 epochs produced average RMSE 
values similar to those observed in the initial test, as seen in Tables 9 and 11. However, Table 12 
provides enough evidence that Scenario 6 with 50 epochs yields more consistent RMSE values 
than the other scenarios. 
 
Figures 7 and 8 illustrate the retest results for Scenario 6 with 50 epochs for red chili and bird’s 
eye chili. These show good accuracy levels, with a narrow gap between the prediction curve 
(orange) and the actual curve (blue). Although there are some wider gaps visible, as in Figure 6, 
the RMSE results in Table 12 show that red chili has a lower RMSE than bird’s eye chili. 
 
For further testing, the trained model configured with Scenario 6 was tested on data outside the 
training dataset (price data for red chili and bird’s eye chili from June 1, 2023, to October 18, 
2023). After applying the same data preparation process used for the training dataset, 140 data 
points were obtained, and the model produced RMSE and MAPE values, as shown in Table 13. 
 



 
 JISKA (Jurnal Informatika Sunan Kalijaga) 
45  ■ Vol. 10, No. 1, JANUARY, 2025: 33 – 47 

 
This article is distributed following Atribution-NonCommersial CC BY-NC as stated on 
https://creativecommons.org/licenses/by-nc/4.0/. 

 
Figure 7 Graph of Re-Test Results for Scenario 6 Epoch 50 on Red Chili 

 
Figure 8 Graph of Re-Test Results for Scenario 6 Epoch 50 on Bird's Eye Chili 

Table 13 Results of the Trained Model Testing 
No. Type of Chili RMSE MAPE 

1 Red Chili (Cabai 
Merah) 

1160.695 2.280 % 

2 Bird's Eye Chili 
(Cabai Rawit) 

816.052 2.256 % 

 

 
Figure 9 Grafik Hasil Pengujian Model yang Sudah Dilatih pada Data Cabai Merah 
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Figure 10 Grafik Hasil Pengujian Model yang Sudah Dilatih pada Data Cabai Rawit 

Both types of chili, red chili and bird’s eye chili, produced very low RMSE values compared to 
those from the previous scenarios, as well as low MAPE values below 2.5%. This indicates that 
the trained model does not suffer from overfitting and generalizes the price patterns of both chili 
types well. Overfitting occurs when a model performs well on the training dataset but poorly on 
the test dataset because it focuses too much on the training details without recognizing general 
patterns in the test data (Ying, 2019). In this case, the trained model did not overfit, as the RMSE 
values produced on the test data were not significantly different from those on the training data, 
as evidenced in Tables 12 and 13, which show test results on data beyond the training dataset 
range. 
 
Graphs depicting the test results on the external dataset for both chili types can be seen in Figures 
9 and 10. The prediction curve (orange) and the actual curve (blue) are almost overlapping, with 
only slight gaps between the two. This demonstrates that the trained model produces highly 
accurate predictions when tested on a different dataset, indicating its strong ability to generalize 
patterns from unseen data. 

4. CONCLUSIONS 

In this study, the researchers attempted to predict chili prices in East Java Province using the 
Long Short-Term Memory (LSTM) network, a method in machine learning. To achieve this goal, 
the researchers designed and conducted experiments to determine the LSTM architecture and 
effective variable configurations for this case. The results show that the LSTM network is well-
suited for chili price data, producing satisfactory results in predicting chili prices in East Java. 
Among all scenarios tested, Scenario 6, with 50 epochs, achieved the best results with the 
smallest RMSE and MAPE. The average RMSE values from the retest of Scenario 6 were 
1751.690 for red chili and 1888.741 for bird’s eye chili. These results suggest that the developed 
model has strong predictive capabilities and generalizes well for both chili types. 
 
For future research, it is recommended to test the LSTM architecture on other types of time-series 
data, such as stock prices or weather data, to expand its application. Furthermore, it is advised 
to develop an information system that implements this chili price prediction model, enabling 
stakeholders to plan chili pricing and distribution more efficiently. With these measures, the results 
of this study could provide broader and more impactful contributions to the field of agricultural 
commodity price prediction. 
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