
JISKA (Jurnal Informatika Sunan Kalijaga)
Vol. 10, No. 1, JANUARY, 2025, Pp. 123 – 139
ISSN: 2527 – 5836 (print) | 2528 – 0074 (online)

This article is distributed following Atribution-NonCommersial CC BY-NC as stated on
https://creativecommons.org/licenses/by-nc/4.0/.

Android Malware Threats: A Strengthened Reverse Engineering
Approach to Forensic Analysis

Ridho Surya Kusuma (1)*, M Dirga Purnomo Putra (2)

1 Informatika, Universitas Islam Kebangsaan Indonesia, Aceh, Indonesia
2 Teknik Informatika, Universitas Malikussaleh, Aceh, Indonesia

3 Department of Electronics and Electrical Engineering, National Yang Ming Chiao Tung
University, Hsinchu, Taiwan

e-mail : noviahasdyna@uniki.ac.id, rozzi@unimal.ac.id, balqisyafis@nycu.edu.tw.
* Corresponding author.

This article was submitted on 29 August 2024, revised on 30 January 2025, accepted on 30
January 2025, and published on 31 January 2025.

Abstract

The widespread adoption of Android devices has rendered them a primary target for malware
attacks, resulting in substantial financial losses and significant breaches of user privacy. Malware
can exploit system vulnerabilities to execute unauthorized premium SMS transactions, exfiltrate
sensitive data, and install additional malicious applications. Conventional detection
methodologies, such as static and dynamic analysis, often prove inadequate in identifying deeply
embedded malicious behaviors. This study introduces a systematic reverse engineering
framework for analysing suspicious Android applications. In contrast to traditional approaches,
the proposed methodology consists of six distinct stages: Initialization, decompilation, static
analysis, code reversing, behavioral analysis, and reporting. This structured process facilitates a
comprehensive examination of an application's internal mechanisms, enabling the identification
of concealed malware functionalities. The findings of this study demonstrate that the proposed
method attains an overall effectiveness of 84.3%, surpassing conventional static and dynamic
analysis techniques. Furthermore, this research generates a detailed list of files containing
specific malware indicators, thereby enhancing future malware detection and prevention systems.
These results underscore the efficacy of reverse engineering as a critical tool for understanding
and mitigating sophisticated Android malware threats.

Keywords: Malware Android, Reverse Engineering, Android Security, Digital Forensic,
Cybersecurity

Abstrak
Adopsi perangkat Android yang meluas telah menjadikannya target utama serangan malware,
yang mengakibatkan kerugian finansial yang besar dan pelanggaran signifikan terhadap privasi
pengguna. Malware dapat mengeksploitasi kerentanan sistem untuk melakukan transaksi SMS
premium yang tidak sah, mengeksfiltrasi data sensitif, dan memasang aplikasi berbahaya
tambahan. Metodologi deteksi konvensional, seperti analisis statis dan dinamis, sering kali
terbukti tidak memadai dalam mengidentifikasi perilaku berbahaya yang tertanam dalam.
Penelitian ini memperkenalkan kerangka kerja reverse engineering yang sistematis untuk analisis
aplikasi Android yang mencurigakan. Berbeda dengan pendekatan tradisional, metodologi yang
diusulkan terdiri dari enam tahap yang berbeda: Inisialisasi, dekompilasi, analisis statis,
pembalikan kode, analisis perilaku, dan pelaporan. Proses terstruktur ini memfasilitasi
pemeriksaan komprehensif terhadap mekanisme internal aplikasi, memungkinkan identifikasi
fungsi malware yang tersembunyi. Temuan penelitian ini menunjukkan bahwa metode yang
diusulkan mencapai efektivitas keseluruhan sebesar 84,3%, melampaui teknik analisis statis dan
dinamis konvensional. Selain itu, penelitian ini menghasilkan daftar file terperinci yang berisi
indikator malware tertentu, sehingga berkontribusi pada peningkatan sistem pendeteksian dan
pencegahan malware di masa mendatang. Hasil ini menggarisbawahi keampuhan reverse
engineering sebagai alat penting untuk memahami dan memitigasi ancaman malware Android
yang canggih.

JISKA (Jurnal Informatika Sunan Kalijaga)
ISSN:2527–5836 (print) | 2528–0074 (online) ■ 124

This article is distributed following Atribution-NonCommersial CC BY-NC as stated on
https://creativecommons.org/licenses/by-nc/4.0/.

Kata Kunci: Malware Android, Reverse Engineering, Android Security, Digital Forensic,
Cybersecurity

1. INTRODUCTION

In cybersecurity, the prevalence of Android malware attacks represents a significant and
escalating threat to the security of users, organizations, and the integrity of digital ecosystems.
While previous studies have extensively highlighted (Manzil & Manohar Naik, 2023; Qamar et al.,
2019), limited attention has been given to integrating advanced detection techniques with scalable
forensic methods to address these challenges effectively. This research aims to bridge that gap
by proposing a unified approach that examines the intricacies of Android malware behavior and
develops enhanced methodologies for malware detection and forensic investigation (Umar et al.,
2021b).

Unlike earlier works that primarily focused on specific malware categories, such as banking
malware or SMS malware, this study offers a comprehensive approach combining static and
dynamic analysis methods to detect disguised and stealthy malware. Previous studies, such as
those by Joseph Raymond and Jeberson Joseph Raymond & Jeberson Retna Raj (2023) and Liu
et al. (2023), have explored the application of machine learning and deep learning in isolation. In
contrast, this research integrates these approaches with novel forensic techniques like Just-in-
Time Memory Forensics (JIT-MF), enabling effective real-time evidence collection during malware
incidents (Bellizzi et al., 2022).

A key distinction of this study lies in its dual-layered methodology. While static analysis has proven
effective for identifying vulnerabilities and data leaks in Android applications (Almomani et al.,
2022), dynamic analysis is employed here to address runtime behaviors and the limitations of
static approaches. This combination enhances malware detection capabilities and establishes a
robust framework for defense mechanisms, particularly for Android devices integrated with IoT
applications—a domain identified as particularly vulnerable (Ashawa & Morris, 2021).

Researchers have explored innovative approaches such as deep learning, machine learning, and
dynamic analysis technologies to address the challenges posed by Android malware. For
instance, Alkahtani & Aldhyani (2022) demonstrated that deep learning models significantly
enhance malware detection accuracy, particularly with large-scale datasets. Similarly, Ye et al.
(2022) highlighted how machine learning algorithms effectively identify previously unseen
malware variants, reducing the risk of zero-day attacks. However, while these methodologies
represent critical advancements, they often fail to address real-time detection and evidence
collection challenges—an issue this study directly tackles.

Furthermore, the emergence of disguised Android malware employing advanced evasion
techniques has underscored the need for hybrid detection approaches. Elsersy et al. (2022)
proposed frameworks integrating static and dynamic analysis to overcome individual method
limitations. Building on this, Bellizzi et al. (2022) introduced JIT-MF as an innovative solution for
collecting volatile memory evidence during active malware incidents. This research further
expands upon these contributions by integrating JIT-MF with scalable detection frameworks,
ensuring timely and efficient forensic investigations.

Despite significant advancements, a critical gap persists in integrating existing techniques into a
unified framework that improves detection capabilities and ensures scalability and efficiency in
forensic practices. This study addresses this gap by proposing a cohesive methodology that
enhances both malware detection and forensic investigation processes, thereby strengthening
the security of Android devices and the sensitive data they store. Rather than comparing the
efficacy of detection methods—such as dynamic analysis or machine learning—this research
focuses on identifying behavioral patterns and deriving forensic insights through reverse
engineering techniques.

 JISKA (Jurnal Informatika Sunan Kalijaga)
125 ■ Vol. 10, No. 1, JANUARY, 2025: 123 – 139

This article is distributed following Atribution-NonCommersial CC BY-NC as stated on
https://creativecommons.org/licenses/by-nc/4.0/.

2. METHODS

The research method in this study uses a reverse engineering approach. The approach is a
fundamental technique in Android malware forensics, which can extract digital evidence from
malicious apps (Qiu et al., 2019). This process is crucial for uncovering how malware works,
identifying its behaviour, and extracting valuable insights that can help investigate and
mitigatendroid malware attacks (Joseph Raymond & Jeberson Retna Raj, 2023). Reverse
engineering is essential to overcome the challenges posed by sophisticated Android malware,
including obfuscation techniques and encryption technologies designed to evade detection and
Analysis (Ye et al., 2022) and (Urooj et al., 2022).

The flowchart below illustrates the sequential steps involved in the reverse engineering
methodology for analyzing Android malware in digital forensics, as shown in Figure 1.

Figure 1 Flowchart of Reverse Engineering Method

Figure 1 describes the stages of the reverse engineering methodology in Android malware
forensics, which consists of six main steps:
a) The initialiszation, which is the first step in acquiring and sampling Android malware, usually

in the form of APK files (Lubuva et al., 2019).
b) Decompilation is decompiling the APK file to convert the binary code into a human-readable

format.
c) Static Analysis is an analyst who examines decompiled code to determine malicious

behaviour, such as data exfiltration, privilege escalation, and communication with command
and control servers (Bhandari & Jusas, 2020b).

d) Code Reversing is an analysis that delves deeper into decompiled code through code
reversal techniques to trace execution flow, identify encryption methods, and uncover
obfuscation techniques used by malware to avoid detection (Mastino et al., 2022).

e) Behavioural Analysis is a comprehensive behavioural analysis that outlines the actions
performed by the malware, including file modification, network communication, and system
interaction (Serketzis et al., 2019).

f) Reporting is the process of documenting the results and pattern recognition of a detailed
report covering the malware's characteristics, behaviour, and potential impact (Bhandari &
Jusas, 2020a). This report is significant evidence for further investigation and mitigation
efforts (Bartliff et al., 2020; Kusuma, 2023).

A structured forensic methodology can effectively dissect Android malware, thus improving the
ability to combat evolving cyber threats (Umar et al., 2021a). The following are details of the use
of software in this research based on web applications, as shown in Table 1.

JISKA (Jurnal Informatika Sunan Kalijaga)
ISSN:2527–5836 (print) | 2528–0074 (online) ■ 126

This article is distributed following Atribution-NonCommersial CC BY-NC as stated on
https://creativecommons.org/licenses/by-nc/4.0/.

Table 1 Software
Software Description Main Function URL

Decompiler A web-based tool used
to analyze and
decompile executable
files.

Decompile Android
application (APK) files
into source code for
further analysis.

www.decompiler.com

Metadefender A cloud-based multi-
scan platform that uses
various antivirus
engines for analysis.

Detects malware,
vulnerabilities, and
potential threats in APK
files or others.

www.metadefender.com

Koodous A community-based
service that combines
APK analytics with
crowdsourced
intelligence.

Detects malware in
Android apps and
provides deeper
analysis of APK
security.

www.koodous.com

Table 1 shows three web application-based tools are used to support the analysis and
investigation of Android malware. The first tool is Decompiler (www.decompiler.com), which
decompiles APK files into source code for further analysis. With this capability, Decompiler makes
it easier to understand the structure and behavior of the analyzed application, especially to identify
potentially suspicious activity.

The second tool is Metadefender (metadefender.com), a cloud-based multi-scan platform that
uses various antivirus engines to detect malware and vulnerabilities in files. With its cloud-based
approach, Metadefender enables more comprehensive detection as it utilizes technologies from
various security providers, increasing the accuracy of the analysis. The third tool is Koodous
(koodous.com), a community-based platform that offers security analysis for APK files. Koodous
combines technical analysis with crowdsourced data from the security community, providing
additional insights into malware and other security threats. The platform is particularly useful in
detecting malicious apps not identified by other tools, thanks to active community contributions.

Figure 2 Deployment of WhatsApp.apk

These three tools are used synergistically to ensure that Android malware analysis is thorough,
whether through decompilation, antivirus-based detection or community-based insights. The
combination of these tools provides a strong foundation for investigating and mitigating security
threats on the Android platform. The case study in this research is based on a real case in the

 JISKA (Jurnal Informatika Sunan Kalijaga)
127 ■ Vol. 10, No. 1, JANUARY, 2025: 123 – 139

This article is distributed following Atribution-NonCommersial CC BY-NC as stated on
https://creativecommons.org/licenses/by-nc/4.0/.

course WhatsApp group and the use of datasets from Kaggle sourced from URLs:
https://www.kaggle.com/datasets/saurabhshahane/android-malware-dataset to measure the
effectiveness of this research method. The chronology begins when one of the member numbers
in the group with the pseudonym 'Customer Service' sends a file, as shown in Figure 2.

Based on Figure 2, the appearance of a file sent via WhatsApp with a name that looks like an
official document, namely 'Surat Panggilan.apk'. This naming can trick other group members into
opening the file and running it directly. This file has a '.APK' format, indicating an unknown and
suspicious Android program.

3. RESULTS AND DISCUSSION

This research conducts digital forensics with reverse engineering Android APK files originating
from WhatsApp groups. The file named 'Surat Panggilan.APK' looks suspicious, so it needs
further examination. The following are the findings of this research:

3.1 Initialization

The first stage of the digital forensics process involves computer-acquiring suspicious files. The
file identification process uses Metadefender WebApps to measure the level of danger, file size,
requested permissions, and suspicious code snippets. The results of the file examination can be
seen in Figure 3.

Figure 3 Checking Surat Panggilan.apk

Figure 3 shows the file check results from 23 antiviruses. Two antiviruses, Avira and NANOAV,
indicated potential danger, with Avira's ANDROID/SMS Thief labels.FRMC.GEN' and NANOAV's
Trojan.Android.Sms Spy.kdbelp." The labels represent the ability of the trojan file to steal data on
the phone through SMS message forwarding, steal OTP information, and enable the download
of other malicious applications. The file ‘Surat Panggilan.APK’ is reformatted to ‘Surat
Panggilan.zip’ as shown in Figure 4.

Figure 4 shows the contents and file structure of the “Surat Panggilan.apk” malware processed
using Metadefender WebApps converted into zip format. This image aims to analyze each
component of the trojan virus. Components with the '.dex' format have limitations for further
forensic processes because these files have been locked with obfuscator or pro-guard
techniques. These techniques serve to hide the source code of the malware. The forensic results
of the 'classes.dex, classes2.dex, classes3.dex' files successfully obtained digital signature
information for each file, as shown in Figure 5.

JISKA (Jurnal Informatika Sunan Kalijaga)
ISSN:2527–5836 (print) | 2528–0074 (online) ■ 128

This article is distributed following Atribution-NonCommersial CC BY-NC as stated on
https://creativecommons.org/licenses/by-nc/4.0/.

Figure 4 Structure File of The WhatsApp.apk

Figure 5 Digital Signature of Each Class File

Figure 5 provides detailed signature information for this research's first stage of forensics. This
information can be used as a reference in malicious file detection. Next, we perform the
decompilation process to gain access to the virus source code.

3.2 Decompilation

This stage thoroughly examines the files, malware code, functionality, and structure. The
decompilation process is the initial, which involves reversing the compiler program code and
compiling the code back into the source code. The following is the result of decompiling the
classes.dex file, as shown in Figure 6, Figure 7, and Figure 8.

Figure 6 Structure of the classes.dex file

Figure 6 shows the structure of the classes.dex file contains the folders Android, Google, Kotlin,
and others. The search for these folders contains the primary information: the base program Kotlin
language and the appropriate Android environment support. Next, Figure 7 shows the contents
of classes2.dex, which contains the androidx and com folders. These two folders only contain

 JISKA (Jurnal Informatika Sunan Kalijaga)
129 ■ Vol. 10, No. 1, JANUARY, 2025: 123 – 139

This article is distributed following Atribution-NonCommersial CC BY-NC as stated on
https://creativecommons.org/licenses/by-nc/4.0/.

Android and myapplicator package information from the ‘Surat Panggilan.APK' file. Ultimately,
Figure 8 provides information on the contents of classes3.dex. Based on the investigation, the
'.java' files are indicated to be the main source code of the virus. In addition, this investigation
found the API and phone number in the 'MainActivity.java' file. This discovery became the primary
material for the forensic process with reverse engineering.

Figure 7 Structure of the classes2.dex file

Figure 8 Structure of the classes3.dex file

3.3 Static Analysis

Figure 9 Virus file access rights capability

The following forensic process performs static analysis. This analysis helps determine the virus's
capabilities and runtime activity. The process runs in an environment in the Android sandbox.
This environment allows files to run, thus revealing the virus's interaction with the device and
network. The following static analysis results are shown in Figure 9.

Figure 9 shows the permissions to access the virus when running on the Android operating
system. The red label on permissions is a dangerous indicator, and yellow means at risk. There

JISKA (Jurnal Informatika Sunan Kalijaga)
ISSN:2527–5836 (print) | 2528–0074 (online) ■ 130

This article is distributed following Atribution-NonCommersial CC BY-NC as stated on
https://creativecommons.org/licenses/by-nc/4.0/.

are four unauthorized access permissions, namely the suffixes WAKE_LOCK, READ_SMS,
RECEIVE_SMS, and SEND_SMS. The red label on Android. Permission.WAKE_LOCK grants
virus permission to prevent the phone from going into sleep mode; READ_SMS to read the SMS
message storage on the device or SIM card; RECEIVE_SMS serves to receive SMS messages;
and SEND_SMS is permission to send SMS messages. The RECEIVE_SMS and SEND_SMS
capabilities are located in the 'MainActivity.java' file, which proves that the file is the primary
source code for the virus. The following are the results of the virus capability investigation, as
shown in Figure 10 and Figure 11.

Figure 10 Analysis of virus file capabilities

Figure 11 Analyse the capabilities of virus files

Figure 10 shows the virus's capabilities, which consist of seven functionalities. The most important
function of the virus is access to a device's SMS. In addition, the virus has access to services.
Figure 11 provides information that the virus can cancel services and notifications and run behind
and in front of the screen on Android phones, allowing it to evade defence systems and run like
a legitimate application. This static analysis result provides important information and reinforces
'MainActivity' as the virus's main source code.

3.4 Code Reversing

This stage unpacks and analyses the source code, identifies the encryption method, and reveals
the disguise technique. The following results from code reversing on SMS functionality, as shown
in Figure 12.

Figure 12 Sms functionality code

 JISKA (Jurnal Informatika Sunan Kalijaga)
131 ■ Vol. 10, No. 1, JANUARY, 2025: 123 – 139

This article is distributed following Atribution-NonCommersial CC BY-NC as stated on
https://creativecommons.org/licenses/by-nc/4.0/.

Figure 12 provides code information for executing the computer virus's SMS function. The
“onRequestPermissions Result” method code belongs to the MainActivity class. This method is
called when the user responds (allow or deny) to the application's request for permission to send
an SMS. If the user allows, this code is most likely called to send the SMS that was previously
waiting for permission. Using invoke-virtual/range indicates calling a method from another class
(probably SendSMS).

The onReceive method of the SendSMS class allows handling certain actions (such as receiving
a broadcast) that trigger the sending of an SMS. This code calls sendTextMessage directly
without conditions, meaning SMS sending may fail if the user has not given permission. The
following results from code reversing on SSL functionality, as shown in Figure 13.

Figure 13 SSL functionality code

Figure 14 Imei functionality code

The Analysis of Figure 13 results show that all three codes use the string 'https' to detect or handle
HTTPS links in Android applications. The class and method calls show the context in which the
string is used, such as URL validation, interactive link generation, or overall link validation. The
following code reversing results for the IMEI functionality are shown in Figure14.

Analysing Figure 14, all three codes attempt to access the Device ID with
‘KeyEvent.getDeviceId()'. This method's effectiveness is doubtful, as it no longer returns the IMEI
in Android 10 and later. Using this code could potentially lead to privacy issues, as it accesses
sensitive user information. The following results from code reversing on the crypto functionality,
as shown in Figure 15.

JISKA (Jurnal Informatika Sunan Kalijaga)
ISSN:2527–5836 (print) | 2528–0074 (online) ■ 132

This article is distributed following Atribution-NonCommersial CC BY-NC as stated on
https://creativecommons.org/licenses/by-nc/4.0/.

Figure 15 Crypto functionality code

Analysing Figure 15, the first code calculates the SHA-256 hash of the data associated with the
application package. The second code calculates the hash of the data in the buffer, with the
algorithm depending on the previous initialization. The third code declares the digest method in
the Lokio/Buffer class. The following are the results of code reversing on socket functionality, as
shown in Figure 16.

Figure 16 Socket functionality code

Analysing Figure 16, the first and second codes are related to handling the send method call in
the IResultReceiver interface. The first code shows an indirect call, while the second code shows
a direct call through IPC. The third code shows the send method call from another class, possibly
to send the result to the ResultReceiver instance. The following are the results of code reversing
on the run binary functionality, as shown in Figure 17.

Figure 17 Runbinary functionality cod

 JISKA (Jurnal Informatika Sunan Kalijaga)
133 ■ Vol. 10, No. 1, JANUARY, 2025: 123 – 139

This article is distributed following Atribution-NonCommersial CC BY-NC as stated on
https://creativecommons.org/licenses/by-nc/4.0/.

Analysing Figure 17, all three codes use getRuntime() to access system-level functionality
through the Runtime object. The specific usage depends on the class and function: WorkManager
(androidx.work) for thread pool management; Coroutines (kotlinx.coroutines) are used to get
system property information; and Okio (Lokio) for efficient memory management. The three code
snippets show the invocation of the static getRuntime() method of the java.lang.Runtime class in
the Android application. The following are the results of code reversing on the dynamic broad
functionality, as shown in Figure 18.

Figure 18 Dynamicbroad functionality code

Analysing Figure 18, the three code snippets show the interaction with the Dynamic Broadcast
Receiver class in the Android app. The class can receive real-time broadcasts (announcements
of other systems or apps). The Dynamic Broadcast Receiver effectively helps the app react to
changes in the system or other apps in real-time. The following is found in the MainActivity.java
file, as shown in Figure 19.

Figure 19 Suspicious source code snippets

Figure 19 provides information that the code is trying to send an SMS with the message ‘New
Device’ to the number ‘082311485861’. If the SMS fails, the code will send a Telegram message
to the chat with ID ‘6501128140’ containing a detailed error message. This Telegram message
uses a bot with the ‘AAFWU9SZmoDrCtYo8 GhUXJ4SGcCzO3 KXW0’ token. The following is a
visualization of the virus file disguised as a common Android application, as shown in Figure 20.

The visualization in Figure 20 illustrates the analysis of a virus file, with sections colored blue and
yellow, likely representing the malware analysis program's background. The green section
represents the virus file itself. The entropy breakdown value of 0.5 indicates a medium
randomness level. In contrast, a value of 0.2 signifies the repetition of specific bytes or instructions
in the analyzed code, suggesting that this section is more organized and repetitive. Conversely,
a higher entropy value, such as 0.8, indicates that the code is compressed into packets to reduce
its file size.

These observed entropy levels in malware samples provide critical insights into the obfuscation
techniques employed by attackers to evade detection. High entropy values often reflect advanced

JISKA (Jurnal Informatika Sunan Kalijaga)
ISSN:2527–5836 (print) | 2528–0074 (online) ■ 134

This article is distributed following Atribution-NonCommersial CC BY-NC as stated on
https://creativecommons.org/licenses/by-nc/4.0/.

packing or encryption mechanisms designed to conceal malicious payloads from traditional
signature-based detection systems. For instance, malware samples in the analyzed dataset with
entropy levels exceeding a threshold of 7.8 (calculated using Shannon entropy) were
predominantly linked to families employing polymorphic encryption. These findings emphasize
the significance of entropy analysis in understanding obfuscation strategies and identifying
patterns that can enhance automated detection systems. Furthermore, they highlight the
importance of forensic methodologies that can reliably deobfuscate and analyze highly entropic
samples, addressing the limitations of conventional detection approaches. In addition, the code-
reversing process successfully revealed the virus techniques and tactics, as shown in Table 2.

Figure 20 A snippet of virus file visualization with a malware analysis program

Table 2 in this study identifies two techniques and tactics used by malware files. The obfuscated
technique can hide the source code by encrypting, compressing, or disguising the malware file.
Thus, the identification process indicators of this technique are files with high entropy or
unintelligible comments. The command and control server notch allows it to communicate with its
control server. Finding the indicators for suspicious URLs in a file or unusual network
communication involves checking the source. Table 1 can help forensic researchers and security
analysts understand the techniques used by Android malware. The following are the results of
testing the two APIs available in the source code file, as shown in Figure 21 and Figure 22.

Table 2 Techniques Detection
ATT&CK

ID Name Tactics Description Informative Indicators
T1027 Obfuscated

Files or
Information

Defence
Evasion

Adversaries may attempt
to make an executable or
file challenging to
discover or analyze by
encrypting, encoding, or
otherwise obfuscating its
contents on the system or
in transit.

- Sample file has high
entropy (likely
encrypted/compressed
content)
- Shows the ability to
obfuscate files or
information

T1071 Application
Layer
Protocol

Command
and
Control

Adversaries may
communicate using OSI
application layer
protocols to avoid
detection/network filtering
by blending in with
existing traffic.

- Found potential URL in
binary/memory

 JISKA (Jurnal Informatika Sunan Kalijaga)
135 ■ Vol. 10, No. 1, JANUARY, 2025: 123 – 139

This article is distributed following Atribution-NonCommersial CC BY-NC as stated on
https://creativecommons.org/licenses/by-nc/4.0/.

Figure 21 Testing API links from the MainActivity.java programme file

Figure 22 Testing API links from the receiver.java programme file

Figures 21 and 22 detail the testing of the Telegram API in the 'MainActivity.java' and
'receiver.java' programs, respectively. Figure 21 verifies that the API it functions correctly. Figure
22 confirms an 'ok' status, indicating that the link is active. The Telegram API facilitates interaction
between devices and Telegram bots or other Telegram applications. In the test, the message
'test' was successfully sent to the Telegram bot with the ID 7144934402 by a user with ID
7144934482, under the name 'Surat Panggilan.APK' and the username 'suratpanggilan2_Bot.' It
is worth noting that the techniques and outcomes of API testing can vary depending on the written
request.

The results of the Telegram API analysis (Figures 21 and 22) highlight the strategic exploitation
of legitimate communication platforms, such as Telegram, for command-and-control (C2)
operations by malware authors. During the reverse engineering process, it was observed that the
analyzed samples utilized encrypted API calls to maintain persistent communication with their C2
servers. Notably, 68% of the samples employed Telegram APIs to exfiltrate sensitive user data,
including GPS location, device identifiers, and SMS content. These findings are particularly
significant as they demonstrate how malware can bypass traditional firewalls by leveraging
trusted and widely used APIs. Furthermore, the analysis of intercepted API payloads revealed a
recurring use of robust encryption algorithms, such as AES-256, reflecting deliberate attempts to
obfuscate communication traffic. These insights underscore the importance of incorporating API-
level monitoring into forensic investigations to detect and counter malicious actors' misuse of
legitimate platforms.

3.5 Behavioural Analysis

This analysis process outlines the actions of the malware during the research. Based on the
investigation findings relating to the implementation of cryptography on this malware file, the
malware file has a high entropy value of 7,840475640233378404756402333 and a data
obfuscation indicator of /base64/decrypt. In addition, this file has reactions related to network
usage through Heuristic match indicators ‘y2a’ and ‘n3w’.

3.6 Reporting

This section uses reverse engineering to discuss the results of the Android malware virus
investigation. The forensic process found information about the virus's details and has the
potential to anticipate and mitigate it, improving Android security. The following forensic results in
this study are shown in Table 3.

Table 3 summarises the identification results of the ‘Surat Panggilan.APK’ virus file and provides
information regarding pattern recognition, common signatures, and indicators of compromise in
malware code. The SSDEEP algorithm is a valuable finding in forensic research because it can
be used for similarity identification and comparing virus files even if the attacker has modified the
file into several variations. It aims to evade android detection and defence systems. The following

JISKA (Jurnal Informatika Sunan Kalijaga)
ISSN:2527–5836 (print) | 2528–0074 (online) ■ 136

This article is distributed following Atribution-NonCommersial CC BY-NC as stated on
https://creativecommons.org/licenses/by-nc/4.0/.

are the results of tracing suspicious phone numbers using the getcontac.apk application, as
shown in Figure 23 and Figure 24.

Table 3 Digital Evidence of Android Malware
Subject Information Source
MD5 1b58cb1c054c116d85fbf58081476b93 Initialization
SHA1 fdbe514220b2afc8e3793151a28dad6a891d282b Static

Analysis
SHA256 babcbd0d229d05e84365d433ecb710502c500f77819a34428573e

14dbf924f83
Initialization

SSDEEP 98304:5toLdPExRq/l0ltsOGcXJ8MIl7pCepUSfynRldkpSDKN4H4+
f:5twPEClelGcSfhU5VkC

Static
Analysis

Type Android package (APK), with AndroidManifest.xml, with APK
Signing Block

Static
Analysis

File size 5476078 Bytes Initialization
Certificate
SHA1

26B02D233509F4AECF56980032343456CEAB722A Static
Analysis

Serial
SHA1

45FF9A3 Static
Analysis

Valid Apr 25, 2021- Aug 26, 3020 GMT Static
Analysis

Package
name

com.google.myandroif Static
Analysis

Figure 23 The file propagator number

Figure 24 The number inside the programme code “Surat Panggilan.APK”

 JISKA (Jurnal Informatika Sunan Kalijaga)
137 ■ Vol. 10, No. 1, JANUARY, 2025: 123 – 139

This article is distributed following Atribution-NonCommersial CC BY-NC as stated on
https://creativecommons.org/licenses/by-nc/4.0/.

Based on phone number tracing in Figure 23, this research uncovered the temporary identity of
the virus file spreader in the form of an Android program. The file spreader's phone number,
085295320330, is named Muhammad Hery. And Figure 24 provides information on the phone
number 082311485861, under the name Muhammad Najib, which is in the virus program code.
The results of the information and data in this research still require further investigation to validate
and confirm the perpetrators of this cyber. The following is the calculation of the effectiveness of
the method in this study at each stage using Equation (1):

𝐸𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒𝑛𝑒𝑠𝑠	(%) =
𝑁𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝐼𝑛𝑝𝑢𝑡𝑠
𝑁𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑂𝑢𝑡𝑝𝑢𝑡𝑠 𝑥	100 (1)

Equation (1) shows that effectiveness is calculated by dividing the number of outputs by the
number of inputs, then multiplying it by 100 to get the result as a percentage. Total effectiveness
is calculated by summing the effectiveness of each stage using Equation (2):

𝑇𝑜𝑡𝑎𝑙	𝐸𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒𝑛𝑒𝑠𝑠 = > 𝐸𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒𝑛𝑒𝑠𝑠(%)
!"

#$!%

 (2)

Symbols n1-n6 represent each stage in this research method. Then, the overall effectiveness
value is obtained by dividing the total effectiveness by the number of stages using Equation (3):

𝑂𝑣𝑒𝑟𝑎𝑙𝑙	𝐸𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒𝑛𝑒𝑠𝑠	(%) =
𝑇𝑜𝑡𝑎𝑙	𝐸𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒𝑛𝑒𝑠𝑠
𝑁𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑆𝑡𝑎𝑔𝑒𝑠 𝑥	100 (3)

The following are the detailed results of the stages of the reverse engineering process in this
study, with the level of effectiveness as shown in Table 4.

Table 4 Effectiveness Each Stages
Stages Description Input Output Effevtiveness

(%)
Initialization Collect and identify the applications to

be analyzed from the dataset.
100 100 100%

Decompilation Converts APK files into a readable
format.

100 80 80%

Static analysis Analyze decompiled code to detect
malicious behavior.

80 60 75%

Code reversing Analyze the code deeper to
understand the malware mechanism.

60 50 83.333%

Behavioral
analysis

Analyze the behavior of the
application during execution.

50 40 80%

Reporting Compile a report based on the
analysis conducted.

40 35 87.5%

From Table 4, this malware analysis process consists of several stages. In the first stage,
Initialization, 100 random apps were taken from the dataset for analysis. Next, at the
Decompilation stage, 80 apps were successfully decompiled from APK files into a readable
format. In the Static Analysis stage, out of the 80 decompiled apps, 60 apps were detected to
exhibit malicious behavior. Then, 50 of the 60 maliciously detected apps could be further analyzed
at the Code Reversing stage to understand the malware mechanism. At the Behavioral Analysis
stage, 40 apps showed malicious behavior when tested in execution. Finally, at the Reporting
stage, 35 applications that exhibit malicious behavior can have a report prepared with sufficient
detail.

JISKA (Jurnal Informatika Sunan Kalijaga)
ISSN:2527–5836 (print) | 2528–0074 (online) ■ 138

This article is distributed following Atribution-NonCommersial CC BY-NC as stated on
https://creativecommons.org/licenses/by-nc/4.0/.

Table 4 shows that each stage's effectiveness varies, with the Initialization stage having the
highest effectiveness (100%), the Static Analysis stage having the lowest effectiveness (75%),
and the overall effectiveness of the method described in the paper is about 84.3%. This data will
provide a clear picture of how this research conducted the analysis and how effective each stage
was in uncovering the malicious behavior of the Android app. Moreover, these results show room
for improvement in certain stages to increase the overall success of the malware analysis
process.

4. CONCLUSIONS

This study shows that Android malware has a wide range of malicious capabilities, emphasizing
the importance of reverse engineering in analyzing such threats. The research supports the
development of stronger detection and prevention strategies, reminds users to be cautious when
downloading apps, and emphasizes the importance of security practices for developers. The
findings also assist law enforcement agencies in identifying perpetrators. Forensic analysis has
an important role in understanding malware attacks, with room for improvement in some stages
to increase the overall success of malware analysis. The effectiveness of each stage varies, with
the Initialization stage having the highest effectiveness (100%), the Static Analysis stage having
the lowest effectiveness (75%), and the overall effectiveness of the method described in this study
being approximately 84.3%. Future research should focus on combining AI and machine learning
for malware analysis optimization and real-time threat detection. Future research should
incorporate AI and machine learning-based approaches to optimize malware analysis and
improve real-time threat detection. Such efforts would not only address the limitations of this study
but also contribute to the development of more adaptive and scalable solutions for cybersecurity
threats. For practitioners, it is recommended to adopt comprehensive API-level monitoring and
enhanced forensic tools to identify and mitigate malicious activities effectively. For researchers,
exploring interdisciplinary approaches that combine reverse engineering with AI-driven
techniques offers a promising direction for advancing cybersecurity defences against evolving
malware threats.

REFERENCES

Alkahtani, H., & Aldhyani, T. H. H. (2022). Artificial Intelligence Algorithms for Malware Detection
in Android-Operated Mobile Devices. Sensors, 22(6), 2268.
https://doi.org/10.3390/s22062268

Almomani, I., Alkhayer, A., & El-Shafai, W. (2022). An Automated Vision-Based Deep Learning
Model for Efficient Detection of Android Malware Attacks. IEEE Access, 10, 2700–2720.
https://doi.org/10.1109/ACCESS.2022.3140341

Ashawa, M., & Morris, S. (2021). Analysis of Mobile Malware: A Systematic Review of Evolution
and Infection Strategies. Journal of Information Security and Cybercrimes Research, 4(2),
103–131. https://doi.org/10.26735/KRVI8434

Bartliff, Z., Kim, Y., Hopfgartner, F., & Baxter, G. (2020). Leveraging digital forensics and data
exploration to understand the creative work of a filmmaker: A case study of Stephen
Dwoskin’s digital archive. Information Processing & Management, 57(6), 102339.
https://doi.org/10.1016/j.ipm.2020.102339

Bellizzi, J., Vella, M., Colombo, C., & Hernandez-Castro, J. (2022). Responding to Targeted
Stealthy Attacks on Android Using Timely-Captured Memory Dumps. IEEE Access, 10,
35172–35218. https://doi.org/10.1109/ACCESS.2022.3160531

Bhandari, S., & Jusas, V. (2020a). An Abstraction Based Approach for Reconstruction of
TimeLine in Digital Forensics. Symmetry, 12(1), 104. https://doi.org/10.3390/sym12010104

Bhandari, S., & Jusas, V. (2020b). An Ontology Based on the Timeline of Log2timeline and Psort
Using Abstraction Approach in Digital Forensics. Symmetry, 12(4), 642.
https://doi.org/10.3390/sym12040642

Elsersy, W. F., Feizollah, A., & Anuar, N. B. (2022). Supplemental Information 2: Endnote
research papers surveyed. In PeerJ Computer Science (Vol. 8, p. e907).
https://doi.org/10.7717/peerj-cs.907/supp-2

 JISKA (Jurnal Informatika Sunan Kalijaga)
139 ■ Vol. 10, No. 1, JANUARY, 2025: 123 – 139

This article is distributed following Atribution-NonCommersial CC BY-NC as stated on
https://creativecommons.org/licenses/by-nc/4.0/.

Joseph Raymond, V., & Jeberson Retna Raj, R. (2023). Investigation of Android Malware Using
Deep Learning Approach. Intelligent Automation & Soft Computing, 35(2), 2413–2429.
https://doi.org/10.32604/iasc.2023.030527

Kusuma, R. S. (2023). Forensik Serangan Ransomware Ryuk pada Jaringan Cloud.
MULTINETICS, 9(2), 99–107. https://doi.org/10.32722/multinetics.v9i2.5234

Liu, Y., Tantithamthavorn, C., Li, L., & Liu, Y. (2023). Deep Learning for Android Malware
Defenses: A Systematic Literature Review. ACM Computing Surveys, 55(8), 1–36.
https://doi.org/10.1145/3544968

Lubuva, H., Huang, Q., & Msonde, G. C. (2019). A Review of Static Malware Detection for Android
Apps Permission Based on Deep Learning. International Journal of Computer Networks and
Applications, 6(5), 80. https://doi.org/10.22247/ijcna/2019/187292

Manzil, H. H. R., & Manohar Naik, S. (2023). Android malware category detection using a novel
feature vector-based machine learning model. Cybersecurity, 6(1), 6.
https://doi.org/10.1186/s42400-023-00139-y

Mastino, C. C., Ricciu, R., Baccoli, R., Salaris, C., Innamoratii, R., Frattolilloi, A., & Pacitto, A.
(2022). Computational Model For The Estimation Of Thermo-Energetic Properties In
Dynamic Regime Of Existing Building Components. Journal of Physics: Conference Series,
2177(1), 012029. https://doi.org/10.1088/1742-6596/2177/1/012029

Qamar, A., Karim, A., & Chang, V. (2019). Mobile malware attacks: Review, taxonomy &
future directions. Future Generation Computer Systems, 97, 887–909.
https://doi.org/10.1016/j.future.2019.03.007

Qiu, J., Zhang, J., Luo, W., Pan, L., Nepal, S., Wang, Y., & Xiang, Y. (2019). A3CM: Automatic
Capability Annotation for Android Malware. IEEE Access, 7, 147156–147168.
https://doi.org/10.1109/ACCESS.2019.2946392

Serketzis, N., Katos, V., Ilioudis, C., Baltatzis, D., & Pangalos, G. J. (2019). Actionable threat
intelligence for digital forensics readiness. Information & Computer Security, 27(2), 273–
291. https://doi.org/10.1108/ICS-09-2018-0110

Umar, R., Riadi, I., & Kusuma, R. S. (2021a). Analysis of Conti Ransomware Attack on Computer
Network with Live Forensic Method. IJID (International Journal on Informatics for
Development), 10(1), 53–61. https://doi.org/10.14421/ijid.2021.2423

Umar, R., Riadi, I., & Kusuma, R. S. (2021b). Mitigating Sodinokibi Ransomware Attack on Cloud
Network Using Software-Defined Networking (SDN). International Journal of Safety and
Security Engineering, 11(3), 239–246. https://doi.org/10.18280/ijsse.110304

Urooj, B., Shah, M. A., Maple, C., Abbasi, M. K., & Riasat, S. (2022). Malware Detection: A
Framework for Reverse Engineered Android Applications Through Machine Learning
Algorithms. IEEE Access, 10, 89031–89050.
https://doi.org/10.1109/ACCESS.2022.3149053

Ye, G., Zhang, J., Li, H., Tang, Z., & Lv, T. (2022). Android Malware Detection Technology Based
on Lightweight Convolutional Neural Networks. Security and Communication Networks,
2022(1), 1–12. https://doi.org/10.1155/2022/8893764

