
JISKA (Jurnal Informatika Sunan Kalijaga) 
Vol. 11, No. 1, JANUARI, 2026, Pp. 13 – 31 
ISSN: 2527 – 5836 (print) | 2528 – 0074 (online)  

 
Artikel ini didistribusikan mengikuti lisensi Atribusi-NonKomersial CC BY-NC sebagaimana tercantum pada 
https://creativecommons.org/licenses/by-nc/4.0/. 

Evaluasi Keamanan OTP Firebase pada Aplikasi Android: 
Perbandingan SAST dan IAST dalam Identifikasi Kerentanan 

 
I Gede Surya Rahayuda (1)*, Ni Putu Linda Santiari (2) 

1 Departemen Informatika, Universitas Udayana, Bali, Indonesia 
2 Departemen Sistem Informasi, ITB STIKOM Bali, Bali, Indonesia 

e-mail : igedesuryarahayuda@unud.ac.id, linda_santiari@stikom-bali.ac.id. 
* Penulis korespondensi. 

Artikel ini diajukan 28 Desember 2024, direvisi 24 Maret 2025, diterima 25 Maret 2025, dan 
dipublikasikan 25 Januari 2025. 

 
Abstract 

Application security is crucial for protecting user data from cyber threats, particularly in Android 
applications that utilize One-Time Password (OTP)-based authentication. This study evaluates 
the security of Firebase OTP via email using a combination of Static Application Security Testing 
(SAST) with Mobile Security Framework (MobSF) and Interactive Application Security Testing 
(IAST) with AppSweep. The results show that the combination of SAST and IAST is superior to 
single testing methods due to its wider detection coverage. SAST detects vulnerabilities in static 
code, while IAST identifies exploits in runtime. The testing showed significant improvements, with 
high-severity vulnerabilities decreasing from 3 cases in OTP-1 to zero in OTP-5, and the security 
score increasing from 43 (B) to 78 (A) in MobSF. Meanwhile, the number of vulnerabilities in 
AppSweep decreased from 14 to 9, with all high-severity vulnerabilities resolved. However, this 
study still has limitations, such as limited dataset coverage and potential bias from the testing 
tool. For further improvement, additional research can integrate artificial intelligence to automate 
vulnerability detection, as well as explore biometric-based authentication to enhance system 
security even further. 
 
Keywords: Firebase OTP, MobS, AppSweep, SAST, IAST 
 

Abstrak 
Keamanan aplikasi sangat penting untuk melindungi data pengguna dari ancaman siber, 
terutama dalam aplikasi Android yang menggunakan autentikasi berbasis One-Time Password 
(OTP). Penelitian ini mengevaluasi keamanan OTP Firebase melalui email menggunakan 
kombinasi Static Application Security Testing (SAST) dengan Mobile Security Framework 
(MobSF) dan Interactive Application Security Testing (IAST) dengan AppSweep. Hasil penelitian 
menunjukkan bahwa kombinasi SAST dan IAST lebih unggul dibandingkan metode pengujian 
tunggal karena cakupan deteksi yang lebih luas. SAST mendeteksi kelemahan dalam kode statis, 
sementara IAST mengidentifikasi eksploitasi dalam runtime. Pengujian menunjukkan perbaikan 
signifikan, di mana kerentanan tingkat tinggi berkurang dari 3 kasus pada OTP-1 menjadi nol 
pada OTP-5, dengan skor keamanan meningkat dari 43 (B) menjadi 78 (A) dalam MobSF. 
Sementara itu, jumlah kerentanan dalam AppSweep menurun dari 14 menjadi 9, dengan semua 
kerentanan tingkat tinggi terselesaikan. Namun, penelitian ini masih memiliki keterbatasan, 
seperti cakupan dataset yang terbatas dan potensi bias dari alat pengujian. Untuk perbaikan lebih 
lanjut, penelitian selanjutnya dapat mengintegrasikan kecerdasan buatan untuk otomatisasi 
deteksi kerentanan serta mengeksplorasi autentikasi berbasis biometrik guna meningkatkan 
keamanan sistem lebih lanjut. 
 
Kata Kunci: OTP Firebase, MobSF, AppSweep, SAST, IAST 

1. PENDAHULUAN  

Keamanan aplikasi telah menjadi tantangan krusial dalam pengembangan perangkat lunak, 
terutama untuk aplikasi yang menangani data sensitif pengguna (Moon et al., 2023). Ancaman 
seperti pencurian data, akses tidak sah, dan manipulasi sistem terus meningkat di era digital yang 
semakin terhubung ini. Oleh karena itu, mekanisme autentikasi yang kuat sangat diperlukan 
untuk melindungi privasi pengguna. Salah satu metode yang banyak digunakan adalah OTP (One 



 
JISKA (Jurnal Informatika Sunan Kalijaga) 
ISSN:2527–5836 (print) | 2528–0074 (online)  ■  14 

 
Artikel ini didistribusikan mengikuti lisensi Atribusi-NonKomersial CC BY-NC sebagaimana tercantum pada 
https://creativecommons.org/licenses/by-nc/4.0/. 

Time Password), yang berfungsi untuk memverifikasi identitas pengguna dalam transaksi penting 
atau proses login.  
 
Meskipun OTP dapat diimplementasikan melalui berbagai saluran, seperti SMS atau aplikasi 
pihak ketiga, OTP berbasis email yang menggunakan Firebase menawarkan kemudahan 
integrasi dan skalabilitas yang menarik untuk aplikasi Android (Asih & Hasibuan, 2023). Namun, 
implementasi OTP ini tidak bebas dari kerentanannya, baik pada sisi kode aplikasi, komunikasi 
jaringan, maupun konfigurasi sistem yang kurang optimal. Meskipun Firebase menyediakan 
platform yang kuat, efektivitas OTP sangat bergantung pada cara implementasi dan pengelolaan 
kode oleh pengembang.  
 
Keamanan produk perangkat lunak secara umum juga menjadi perhatian penting, mencakup 
berbagai aspek seperti kerahasiaan, integritas, dan ketersediaan (Stanciu, 2023). Dalam 
penelitian ini, evaluasi terhadap OTP Firebase dilakukan dengan mempertimbangkan perbedaan 
mendasar dibandingkan metode OTP lainnya, seperti OTP berbasis SMS dan OTP melalui 
aplikasi pihak ketiga. Salah satu alasan utama adalah aspek keamanan, di mana OTP Firebase 
menawarkan integrasi yang lebih erat dengan ekosistem Google, tetapi masih memiliki potensi 
celah keamanan yang perlu dieksplorasi lebih dalam.  
 
Studi ini menyoroti kelemahan dan keunggulan masing-masing metode melalui analisis 
keamanan yang lebih komprehensif, termasuk potensi serangan man-in-the-middle, phishing, 
dan eksploitasi API. Beberapa penelitian sebelumnya telah mengevaluasi keamanan OTP dalam 
berbagai konteks, seperti penggunaan algoritma Speck untuk enkripsi OTP guna mencegah 
serangan sniffing dan intercept nirkabel (Taqwim et al., 2021), serta optimasi autentikasi OTP 
menggunakan algoritma Random Forest untuk mendeteksi dan mencegah penipuan (Lubis & 
Riswanto, 2024). Selain itu, pendekatan OTP berbasis Time-Based One-Time Password (TOTP) 
juga telah diterapkan untuk meningkatkan perlindungan data digital (Wibawa et al., 2024).  
 
Mengacu pada studi-studi tersebut, penelitian ini mengadopsi kombinasi metode Static 
Application Security Testing (SAST) dan Interactive Application Security Testing (IAST), karena 
keduanya saling melengkapi dalam mendeteksi celah keamanan secara lebih menyeluruh, 
dibandingkan hanya mengandalkan salah satu metode. Dengan pendekatan tersebut, penelitian 
ini memberikan kontribusi signifikan dalam menilai keamanan OTP Firebase secara lebih 
mendalam dibandingkan studi sebelumnya. Penelitian ini difokuskan pada implementasi OTP 
berbasis email dengan Firebase dalam aplikasi Android menggunakan Kotlin sebagai bahasa 
pemrograman. Kotlin menawarkan berbagai fitur yang meningkatkan keamanan aplikasi, seperti 
penanganan null yang eksplisit dan dukungan untuk coroutine. Meskipun demikian, implementasi 
OTP berbasis Firebase masih menghadapi beberapa masalah kerentanannya, yang dapat 
mempengaruhi keamanan aplikasi secara keseluruhan. Oleh karena itu, pengujian keamanan 
dengan pendekatan yang tepat menjadi sangat penting untuk memastikan bahwa aplikasi aman 
digunakan oleh pengguna.  
 
Dalam konteks keamanan aplikasi seluler, berbagai standar dan teknik telah dikembangkan untuk 
memastikan keamanan dan privasi pengguna. OWASP (Open Worldwide Application Security 
Project) telah menetapkan standar industri seperti MASVS (Mobile Application Security 
Verification Standard) (Schleier, Holguera, Mueller, Willemsen, et al., 2024) dan MASTG (Mobile 
Application Security Testing Guide) (Schleier, Holguera, Mueller, & Willemsen, 2024), yang 
memberikan panduan komprehensif untuk pengujian dan pengembangan aplikasi seluler yang 
aman. Selain itu, penelitian tentang aplikasi seluler berbasis cloud (Chimuco et al., 2023) 
menyoroti pentingnya pemahaman taksonomi serangan, mekanisme keamanan, dan spesifikasi 
pengujian keamanan untuk ekosistem ini.  
 
Metode autentikasi yang aman juga menjadi fokus utama dalam penelitian. Studi tentang sistem 
autentikasi perbankan online (Danthy et al., 2024) mengusulkan penggunaan Time-Bound 
Password untuk meningkatkan keamanan transaksi keuangan. Namun, penelitian lain (Ikram et 
al., 2025) mengungkapkan risiko keamanan dan privasi yang terkait dengan aplikasi autentikator 



 
 JISKA (Jurnal Informatika Sunan Kalijaga) 
15  ■ Vol. 11, No. 1, JANUARI, 2026: 13 – 31 

 
Artikel ini didistribusikan mengikuti lisensi Atribusi-NonKomersial CC BY-NC sebagaimana tercantum pada 
https://creativecommons.org/licenses/by-nc/4.0/. 

OTP seluler, menyoroti perlunya jaminan keamanan dan privasi yang lebih baik dalam aplikasi 
tersebut.  
 
Deteksi dan pencegahan malware pada perangkat seluler Android juga merupakan area 
penelitian yang penting (Keteku et al., 2024). Berbagai teknik dan alat telah dikembangkan untuk 
mengidentifikasi dan mencegah malware, termasuk analisis statis dan dinamis. Penelitian 
tentang alat SAST (Static Application Security Testing) (Li et al., 2023; Smyčka, 2024) 
menunjukkan pentingnya evaluasi dan penerapan alat SAST yang efektif untuk mengidentifikasi 
kerentanan dalam kode sumber. Selain itu, platform analisis statis (Sonnekalb et al., 2023) dapat 
digunakan untuk memonitor tren keamanan dalam repositori dan mengidentifikasi potensi 
kerentanan.  
 
Analisis statis ini penting karena kerentanan dapat muncul dari berbagai faktor, termasuk 
kelemahan pada kode sumber (Stanciu, 2023). Meskipun telah dilakukan penelitian bertahun-
tahun, deteksi otomatis kerentanan dalam aplikasi seluler tetap menjadi tantangan. Alat SAST 
dapat mengidentifikasi kelemahan pada kode sumber atau kode yang dikompilasi tanpa 
menjalankan aplikasi, namun memiliki keterbatasan seperti deteksi kerentanan yang terbatas, 
kurangnya pembaruan, dan ketahanan terbatas terhadap teknik pengaburan (Pagano et al., 
2023).  
 
Pengujian keamanan aplikasi seluler juga melibatkan pendekatan dinamis (Sutter et al., 2024), 
yang memungkinkan analisis perilaku aplikasi saat dijalankan. Tinjauan literatur sistematis 
tentang analisis keamanan dinamis di Android (Sutter et al., 2024) menyoroti pentingnya alat 
instrumentasi dan pemantauan jaringan dalam mengidentifikasi kerentanan. Selain itu, penelitian 
tentang pengujian keamanan otomatis untuk aplikasi seluler (Nutalapati, 2023) menekankan 
peran toko aplikasi dalam memastikan keamanan dan kualitas aplikasi yang diinstal oleh 
pengguna.  
 
Dalam beberapa tahun terakhir, penelitian tentang keamanan aplikasi seluler juga mencakup 
studi tentang operasi tersembunyi dan pencurian informasi pribadi (Lim et al., 2024). Studi ini 
menyoroti potensi penyalahgunaan fitur aksesibilitas Android dan perlunya langkah-langkah 
keamanan yang komprehensif untuk melawan eksploitasi tersebut. Selain itu, penelitian tentang 
kemajuan dalam pengujian keamanan (Pargaonkar, 2023) mencakup berbagai metodologi dan 
tren yang muncul, seperti integrasi DevSecOps dan pengujian keamanan berkelanjutan.  
 
Terakhir, penelitian tentang evaluasi dan penerapan alat SAST (Smyčka, 2024) memberikan 
panduan sistematis untuk menerapkan alat SAST dalam praktik pengembangan perangkat lunak. 
Selain itu, penelitian tentang platform analisis statis (Sonnekalb et al., 2023) menawarkan solusi 
untuk memantau peringatan keamanan di seluruh riwayat versi repositori. Selain metode SAST, 
penelitian ini juga akan menggunakan metode IAST (Pargaonkar, 2023). Alat yang digunakan 
untuk SAST adalah Mobile-Security-Framework (MobSF), sementara untuk IAST menggunakan 
AppSweep. Dari berbagai alat yang tersedia untuk SAST, DAST, dan IAST, beberapa di 
antaranya meliputi eslint, mypy, trivy, trufflehog, pylint, super-linter, checkov, checkstyle, moose, 
semgrep, pmd, pypi-auto-scanner, error-prone, kube-bench, molecule, ansible-lint, git-secrets, 
clair, biome, kics, black, shellcheck, ruff, gitleaks, infer, SonarQube, CodeQL, Contrast, Horusec, 
Insider, SBwFSB, Toller, Ares, Q-Testing, Chimp, Monkey, ACVTool, TimeMachine, WCTester, 
Sapienz, Stoat, dan AndroTest (Li et al., 2023; Pargaonkar, 2023; Schleier, Holguera, Mueller, 
Willemsen, et al., 2024; Smyčka, 2024).  
 
Pemilihan MobSF untuk SAST didasarkan pada keunggulannya sebagai alat open-source yang 
secara khusus dirancang untuk aplikasi mobile dan telah terbukti efektif serta terpercaya. 
Sementara itu, pemilihan AppSweep untuk IAST dipilih karena masih sangat sedikit sumber yang 
menyebutkan penggunaan alat ini untuk IAST, serta metode ini belum banyak diterapkan, 
terutama dalam konteks aplikasi mobile dan pemantauan kerentanannya secara real-time. Selain 
itu, AppSweep juga memiliki versi gratis yang mempermudah penerapannya dalam penelitian ini. 



 
JISKA (Jurnal Informatika Sunan Kalijaga) 
ISSN:2527–5836 (print) | 2528–0074 (online)  ■  16 

 
Artikel ini didistribusikan mengikuti lisensi Atribusi-NonKomersial CC BY-NC sebagaimana tercantum pada 
https://creativecommons.org/licenses/by-nc/4.0/. 

2. METODE PENELITIAN 

Penelitian ini mengevaluasi keamanan implementasi OTP Firebase berbasis email pada aplikasi 
Android dengan menggunakan metode pengujian keamanan Static Application Security Testing 
(SAST) dan Interactive Application Security Testing (IAST). Pendekatan ini mencakup tiga aspek 
utama: implementasi OTP Firebase, pengujian SAST menggunakan Mobile Security Framework 
(MobSF), dan pengujian IAST menggunakan AppSweep. 

2.1 OTP Firebase 

Implementasi OTP berbasis email menggunakan Firebase Authentication memanfaatkan library 
Firebase untuk pengelolaan autentikasi. Firebase Authentication menyediakan antarmuka yang 
memungkinkan pengembang mengintegrasikan berbagai metode autentikasi, termasuk OTP, 
secara sederhana dan aman. Library dan modul yang digunakan adalah Firebase Authentication 
SDK yang digunakan untuk pengiriman dan validasi OTP dan Email Integration untuk 
mengirimkan kode OTP melalui email ke pengguna menggunakan layanan Firebase (Ikram et al., 
2025; Lim et al., 2024).  
 
Gambar 1 menunjukkan alur proses OTP, yang terdiri dari tiga tahap utama. Pertama, pada tahap 
permintaan OTP, aplikasi memanggil API Firebase untuk menghasilkan kode OTP dan 
mengirimkannya ke alamat email pengguna. Kedua, pada tahap validasi OTP, pengguna 
memasukkan kode OTP yang diterima, kemudian aplikasi melakukan verifikasi dengan Firebase 
untuk memastikan keabsahan kode tersebut. Terakhir, pada tahap manajemen token, setelah 
OTP berhasil diverifikasi, Firebase menghasilkan token autentikasi yang digunakan untuk 
menginisiasi sesi login pengguna. 
 

 
Gambar 1 Alur OTP 

2.2 SAST (Static Application Security Testing) 

Static Application Security Testing (SAST) adalah metode pengujian keamanan yang 
menganalisis kode sumber aplikasi tanpa perlu menjalankan aplikasi tersebut. Pengujian ini 
biasanya dilakukan pada tahap awal pengembangan untuk mendeteksi kerentanan seperti 
penggunaan API yang tidak aman, hardcoded credentials, atau algoritma enkripsi yang lemah. 
Beberapa jenis SAST antara lain: Code Review Tools, yang mengidentifikasi masalah 
berdasarkan aturan tertentu seperti yang dilakukan oleh SonarQube; Binary Analysis Tools, yang 
menganalisis file biner seperti APK untuk menemukan kerentanan; serta Framework Analysis 
Tools, yang fokus pada analisis kerangka kerja yang digunakan, seperti Android SDK atau 
Firebase. 
 
Dalam penelitian ini, Mobile Security Framework (MobSF) dipilih sebagai alat utama untuk 
pengujian SAST karena beberapa alasan. Pertama, MobSF mendukung analisis baik untuk file 



 
 JISKA (Jurnal Informatika Sunan Kalijaga) 
17  ■ Vol. 11, No. 1, JANUARI, 2026: 13 – 31 

 
Artikel ini didistribusikan mengikuti lisensi Atribusi-NonKomersial CC BY-NC sebagaimana tercantum pada 
https://creativecommons.org/licenses/by-nc/4.0/. 

APK (Android) maupun IPA (iOS), sehingga mampu menganalisis kode sumber dan juga file biner 
aplikasi. Kedua, MobSF memiliki fitur deteksi konfigurasi Firebase yang lemah, termasuk API Key 
yang terekspos atau akses database yang tidak aman. Ketiga, alat ini dapat diintegrasikan 
dengan proses CI/CD, memungkinkan otomatisasi pengujian keamanan dalam pipeline 
pengembangan. Keempat, sebagai solusi open-source yang andal, MobSF menjadi alternatif 
yang kuat dibandingkan alat berbayar seperti Checkmarx, Veracode, atau SonarQube 
(Nutalapati, 2023; Smyčka, 2024). 
 
Gambar 2 memperlihatkan alur pengujian dengan MobSF, yang terdiri dari tiga tahap utama. 
Pertama, file APK diunggah ke antarmuka MobSF untuk dianalisis. Kedua, dilakukan analisis 
statis untuk menghasilkan laporan keamanan. Ketiga, hasil laporan dianalisis untuk 
mengidentifikasi kelemahan dan rekomendasi perbaikan yang diberikan oleh MobSF. 
 
Sebagai alat pengujian keamanan aplikasi seluler, MobSF menawarkan berbagai fitur, termasuk 
Static Analysis yang menganalisis APK tanpa menjalankannya, Dynamic Analysis untuk menguji 
aplikasi pada emulator, dan Code Analysis untuk mendeteksi kelemahan dalam kode sumber 
aplikasi. Selain itu, MobSF juga melakukan pemindaian terhadap potensi kerentanan, seperti 
hardcoded credentials (misalnya API key atau password), komunikasi jaringan yang tidak aman 
(HTTP tanpa SSL), penggunaan library pihak ketiga yang rentan, serta kebijakan izin aplikasi 
yang terlalu luas. Kategori kerentanan yang dievaluasi oleh MobSF dapat dilihat pada Tabel 1, 
yang mengklasifikasikan tingkat keparahan kerentanan mulai dari High, Medium, hingga Low. 
 

 
Gambar 2 Alur SAST dan MobSF 

Tabel 1 Kategori Kerentanan MobSF 
Tingkat 

Keparahan Deskripsi 
High Kerentanan dengan tingkat risiko sangat tinggi yang dapat membahayakan 

aplikasi dan pengguna, sehingga perlu segera diperbaiki. Semakin tinggi 
tingkat risikonya, semakin besar potensi dampaknya. 

Warning Potensi risiko keamanan yang dapat menimbulkan masalah, namun tidak 
sekrusial tingkat High. Tetap perlu diperbaiki untuk mencegah dampak lebih 
lanjut. Semakin tinggi tingkat risikonya, semakin besar potensi dampaknya. 

Info Masalah minor yang tidak secara langsung mengancam keamanan, tetapi 
dapat memengaruhi kualitas aplikasi atau pengalaman pengguna. Semakin 
tinggi tingkat risikonya, semakin besar potensi dampaknya. 

Secure Hasil pengujian menunjukkan bahwa aplikasi memiliki perlindungan yang 
memadai dan tidak ditemukan kerentanan keamanan. Semakin tinggi 
nilainya, semakin baik tingkat keamanannya. 

 



 
JISKA (Jurnal Informatika Sunan Kalijaga) 
ISSN:2527–5836 (print) | 2528–0074 (online)  ■  18 

 
Artikel ini didistribusikan mengikuti lisensi Atribusi-NonKomersial CC BY-NC sebagaimana tercantum pada 
https://creativecommons.org/licenses/by-nc/4.0/. 

2.3 IAST (Interactive Application Security Testing) 

Interactive Application Security Testing (IAST) adalah metode pengujian keamanan yang 
menggabungkan elemen dari pengujian statis (SAST) dan dinamis (DAST). Pengujian ini 
dilakukan saat aplikasi berjalan untuk memberikan wawasan mengenai bagaimana aplikasi 
merespons serangan keamanan secara langsung. Dalam penelitian ini, AppSweep dipilih 
sebagai alat utama karena keunggulannya dalam mendeteksi kerentanan aplikasi Android secara 
interaktif dan kontekstual. Alur proses pengujian IAST menggunakan AppSweep digambarkan 
pada Gambar 3. 
 
AppSweep memiliki beberapa keunggulan dibandingkan alat IAST lainnya. Pertama, alat ini 
memiliki integrasi yang kuat dengan standar keamanan OWASP Mobile Top 10, memastikan 
bahwa pengujian berfokus pada kerentanan paling kritis dalam aplikasi seluler. Kedua, 
AppSweep melakukan analisis berbasis IAST yang memungkinkan deteksi kerentanan secara 
runtime, memberikan hasil yang lebih akurat dibandingkan metode statis (SAST) yang hanya 
menganalisis kode sumber tanpa menjalankannya (Li et al., 2023; Pargaonkar, 2023). Selain itu, 
AppSweep menyediakan automated security testing yang dapat dengan mudah diintegrasikan ke 
dalam alur kerja pengembangan (CI/CD pipeline) dan menghasilkan laporan yang komprehensif 
serta mudah dipahami. 
 
AppSweep juga menjadi pilihan yang ekonomis karena menyediakan versi gratis, memungkinkan 
pengembang melakukan pengujian tanpa biaya tambahan. Dibandingkan dengan alat lain seperti 
Veracode IAST dan Contrast Security, AppSweep lebih fokus pada aplikasi mobile (Android), 
sedangkan dua alat lainnya umumnya digunakan untuk aplikasi web dan backend. Dengan 
demikian, AppSweep menjadi solusi yang fleksibel dan hemat biaya untuk mengamankan aplikasi 
Android, terutama pada tahap awal dan menengah pengembangan. 
 

 
Gambar 3 Alur IAST Menggunakan Appsweep 



 
 JISKA (Jurnal Informatika Sunan Kalijaga) 
19  ■ Vol. 11, No. 1, JANUARI, 2026: 13 – 31 

 
Artikel ini didistribusikan mengikuti lisensi Atribusi-NonKomersial CC BY-NC sebagaimana tercantum pada 
https://creativecommons.org/licenses/by-nc/4.0/. 

Alur pengujian dengan AppSweep dijelaskan sebagai berikut: 
• Unggah file APK ke AppSweep melalui antarmuka web atau plugin Android Studio. 
• Instal dan jalankan aplikasi pada emulator atau perangkat nyata. 
• Analisis laporan keamanan berdasarkan data yang dikumpulkan selama pengujian. 

 
Fitur utama AppSweep meliputi pengujian pada emulator atau perangkat nyata, laporan berbasis 
OWASP Mobile Top 10, serta analisis izin aplikasi, penggunaan API, dan respons terhadap 
potensi serangan. Jenis-jenis kerentanan yang dianalisis AppSweep dirangkum pada Tabel 2 
Kategori Kerentanan AppSweep, yang mencakup isu seperti data leakage, penyimpanan data 
tidak aman, ketidakamanan komunikasi jaringan, dan akses tidak sah ke API atau database. 

Tabel 2 Kategori Kerentanan AppSweep 
Tingkat 

Keparahan Deskripsi 
High Masalah kritikal yang dapat membahayakan aplikasi dan data pengguna. 

Harus segera diperbaiki untuk mencegah potensi eksploitasi. Semakin tinggi 
tingkat risikonya, semakin berbahaya. 

Medium Kerentanan yang meningkatkan risiko keamanan aplikasi, tetapi tidak sebesar 
tingkat High. Perlu diperbaiki untuk mengurangi kemungkinan ancaman. 
Semakin tinggi tingkat risikonya, semakin berbahaya. 

Low Masalah dengan dampak kecil yang tidak langsung membahayakan, tetapi 
dapat memengaruhi kualitas atau kinerja aplikasi. Sebaiknya tetap diperbaiki 
untuk meningkatkan keamanan secara keseluruhan. Semakin tinggi tingkat 
risikonya, semakin berbahaya. 

Issues Jumlah total kerentanan yang terdeteksi, mencakup kategori High, Medium, 
dan Low. 

OWASP Klasifikasi masalah keamanan berdasarkan standar OWASP MASVS dan 
OWASP MASTG (Schleier, Holguera, Mueller, & Willemsen, 2024; Schleier, 
Holguera, Mueller, Willemsen, et al., 2024). 

  
Libraries Daftar kerentanan yang ditemukan dalam pustaka (libraries) yang digunakan 

dalam aplikasi. Merupakan penjabaran lebih detail dari issues. 
 
Eksperimen dilakukan menggunakan dua emulator pada dua perangkat berbeda dengan 
spesifikasi sebagai berikut: 
 
Perangkat 1 (PC - Pengembangan Kode): 
• Prosesor Intel Core i3 generasi ke-10, RAM 8GB 
• Sistem Operasi: Windows 11 
• Android Emulator: Pixel 3a API 30 (Android 11) 

 
Perangkat 2 (Laptop - Pengujian Keamanan): 
• Prosesor Intel Core i3 generasi ke-12, RAM 8GB 
• Sistem Operasi: Windows 11 
• Android Emulator: Pixel 3a API 30 (Android 11) 
• Pengujian dilakukan dari lokasi geografis berbeda menggunakan AppSweep 

 
Dalam analisis keamanan aplikasi, terdapat kemungkinan terjadinya false positives (kerentanan 
terdeteksi padahal tidak ada) dan false negatives (kerentanan tidak terdeteksi). Untuk 
meminimalkan hal ini, dilakukan beberapa langkah: 
• Cross-validation: hasil dari MobSF (SAST) dan AppSweep (IAST) dibandingkan untuk 

mendeteksi ketidaksesuaian hasil. 
• Manual review: verifikasi manual terhadap hasil deteksi untuk memastikan akurasi laporan. 
• Re-run testing: pengujian diulang beberapa kali dengan versi APK yang berbeda untuk 

memeriksa konsistensi hasil. 
 



 
JISKA (Jurnal Informatika Sunan Kalijaga) 
ISSN:2527–5836 (print) | 2528–0074 (online)  ■  20 

 
Artikel ini didistribusikan mengikuti lisensi Atribusi-NonKomersial CC BY-NC sebagaimana tercantum pada 
https://creativecommons.org/licenses/by-nc/4.0/. 

Perbandingan antara MobSF dan AppSweep dalam mendeteksi kerentanan dirangkum pada 
Tabel 3, yang menunjukkan bahwa kedua alat memiliki karakteristik pelengkap — MobSF unggul 
dalam mendeteksi kelemahan pada konfigurasi dan kode sumber, sedangkan AppSweep lebih 
efektif dalam mendeteksi kerentanan yang muncul selama runtime. 

Tabel 3 Perbandingan MobSF dan AppSweep dalam Deteksi Kerentanan 
Jenis Kerentanan MobSF (SAST) AppSweep (IAST) 
Hardcoded Credentials Ya Tidak 
Insecure API Usage Ya Ya 
Improper Cryptography Ya Tidak 
Data Leakage Tidak Ya 
Insecure Storage Tidak Ya 
Insecure Communication Ya Ya 
Runtime Exploitation Tidak Ya 

3. HASIL DAN PEMBAHASAN 

Pada bagian ini, akan dibahas secara rinci hasil implementasi dan pengujian keamanan dari 
aplikasi OTP Firebase berbasis email. Pembahasan mencakup tiga aspek utama, yaitu: (1) 
implementasi fitur OTP menggunakan Firebase Authentication, (2) pengujian keamanan aplikasi 
secara statis (SAST) menggunakan Mobile Security Framework (MobSF), dan (3) pengujian 
keamanan secara interaktif (IAST) menggunakan AppSweep. Setiap bagian dijelaskan secara 
sistematis dengan menampilkan potongan kode program, gambar tangkapan layar dari 
lingkungan pengembangan dan hasil pengujian, serta laporan analisis keamanan yang dihasilkan 
oleh masing-masing alat. Melalui pendekatan ini, diharapkan dapat memberikan pemahaman 
menyeluruh mengenai bagaimana setiap metode pengujian bekerja, jenis kerentanan yang 
terdeteksi, serta rekomendasi perbaikan yang dihasilkan dari proses analisis. 

3.1 OTP Firebase 

Pengujian implementasi OTP Firebase dilakukan dengan menggunakan Firebase Authentication 
untuk mengirimkan OTP melalui email dan memverifikasi kode yang diterima. Proses ini 
memerlukan pemahaman tentang bagaimana Firebase menangani autentikasi pengguna dan 
bagaimana kode implementasi dapat berfungsi dalam aplikasi Android. Untuk 
mengimplementasikan OTP menggunakan Firebase, struktur file aplikasi Android, yang 
ditunjukkan pada Gambar 4, terdiri dari beberapa komponen yang berfungsi untuk mengirimkan 
dan memverifikasi OTP.  
 

 
Gambar 4 Struktur File Aplikasi Android 

Manifest 
AndroidManifest.xml 

Class (Java, Kotlin) 
com.example. ... 

MainActivity 
 NextActivity 
Res 

Layout 
 activity_main.xml 
 activity_next.xml 

Values 
 string.xml 

Themes 
 themes.xml 
Gradle 

build.gradle (Project Level: untuk konfigurasi global proyek) 
build.gradle (Module Level: untuk konfigurasi modul individual) 
setting.gradle (untuk mengatur modul proyek) 



 
 JISKA (Jurnal Informatika Sunan Kalijaga) 
21  ■ Vol. 11, No. 1, JANUARI, 2026: 13 – 31 

 
Artikel ini didistribusikan mengikuti lisensi Atribusi-NonKomersial CC BY-NC sebagaimana tercantum pada 
https://creativecommons.org/licenses/by-nc/4.0/. 

Pada Gambar 5 menunjukkan potongan kode untuk mengirim dan memverifikasi OTP melalui 
email. Kode Tersebut merupakan bagian dari aplikasi Android yang dituliskan menggunakan 
Kotlin dan dapat dilihat pada repositori berikut: https://github.com/rahayuda/OTP-Evaluation.git. 
Pada potongan kode tersebut menggunakan dua fungsi utama, yaitu sendOTP dan verifyOTP. 
Fungsi sendOTP berfungsi untuk mengirimkan OTP ke alamat email pengguna melalui layanan 
FirebaseAuth, sedangakan fungsi verifyOTP digunakan untuk memverifikasi OTP yang 
dimasukkan oleh pengguna untuk proses autentikasi. Gambar 6 menunjukkan tampilan 
dashboard pada Android Studio yang digunakan sebagai lingkungan pengembangan aplikasi ini. 
 

 
Gambar 5 Kode Pemrograman Pengiriman OTP 

 
Gambar 6 Android Studio Dashboard 

 

// Mengirim OTP melalui email 
fun sendOTP(email: String) { 
    FirebaseAuth.getInstance().sendSignInLinkToEmail(email, actionCodeSettings) 
        .addOnCompleteListener { task -> 
            if (task.isSuccessful) { 
                println("OTP dikirim ke $email") 
            } else { 
                println("Gagal mengirim OTP: ${task.exception?.message}") 
            } 
        } 
} 
 
// Memverifikasi OTP 
fun verifyOTP(email: String, otp: String) { 
    FirebaseAuth.getInstance().signInWithEmailLink(email, otp) 
        .addOnCompleteListener { task -> 
            if (task.isSuccessful) { 
                println("Login berhasil!") 
            } else { 
                println("Validasi OTP gagal: ${task.exception?.message}") 
            } 
        } 
} 

https://github.com/rahayuda/OTP-Evaluation.git


 
JISKA (Jurnal Informatika Sunan Kalijaga) 
ISSN:2527–5836 (print) | 2528–0074 (online)  ■  22 

 
Artikel ini didistribusikan mengikuti lisensi Atribusi-NonKomersial CC BY-NC sebagaimana tercantum pada 
https://creativecommons.org/licenses/by-nc/4.0/. 

Untuk memverifikasi implementasi OTP, dilakukan konfigurasi di halaman Firebase 
Authentication. Firebase menyediakan antarmuka yang memungkinkan pengembang melihat 
status autentikasi pengguna, termasuk pengguna yang telah berhasil melakukan verifikasi email. 
Gambar 7 menunjukkan tangkapan layar dari halaman Firebase Authentication, yang 
menampilkan daftar pengguna yang terdaftar dan telah terverifikasi. 
 
Jika akun pengguna belum terdaftar, pengguna tidak dapat melakukan login. Proses pendaftaran 
dilakukan dengan memasukkan email yang valid, setelah itu Firebase mengirimkan email 
verifikasi kepada pengguna. Pengguna kemudian harus memverifikasi email tersebut untuk 
menyelesaikan pendaftaran. Gambar 8 menampilkan tangkapan layar email verifikasi yang 
dikirim serta status verifikasi yang berhasil dilakukan. Setelah terdaftar dan berhasil 
memverifikasi email, pengguna dapat melakukan login dan diarahkan ke halaman profil. 
Sebaliknya, jika akun belum terdaftar atau email belum diverifikasi, proses login akan gagal. 
Gambar 9 menunjukkan tangkapan layer halaman login dan halaman profil pengguna setelah 
berhasil login. 

 

 
Gambar 7 Firebase Authentication 

  

Gambar 8 Verifikasi Email 



 
 JISKA (Jurnal Informatika Sunan Kalijaga) 
23  ■ Vol. 11, No. 1, JANUARI, 2026: 13 – 31 

 
Artikel ini didistribusikan mengikuti lisensi Atribusi-NonKomersial CC BY-NC sebagaimana tercantum pada 
https://creativecommons.org/licenses/by-nc/4.0/. 

  

Gambar 9 Halaman Login dan Profil 

3.2 SAST (Static Application Security Testing) 

Analisis Keamanan Statis (SAST) dilakukan menggunakan Mobile Security Framework (MobSF) 
untuk menganalisis file APK aplikasi secara statis. MobSF memindai aplikasi sebelum dijalankan 
untuk mendeteksi kerentanan yang dapat dieksploitasi oleh pihak yang tidak bertanggung jawab. 
Pengujian ini sangat penting untuk mengidentifikasi potensi masalah keamanan pada tahap awal 
pengembangan, sehingga dapat diatasi sebelum aplikasi dirilis ke publik. Tabel 4 menunjukkan 
hasil pemindaian dari lima percobaan yang dilakukan pada aplikasi OTP, dengan berbagai tingkat 
kerentanannya yang terdeteksi oleh MobSF. 

Tabel 4 Evaluasi OTP App dengan MobSF 
Evaluation High Warning Info Secure Score Grade Report 
OTP-1 3 8 1 1 43 B OTP-1.pdf 
OTP-2 1 8 1 1 52 B OTP-2.pdf 
OTP-3 0 6 1 1 60 A OTP-3.pdf 
OTP-4 0 3 1 1 67 A OTP-4.pdf 
OTP-5 0 3 1 2 78 A OTP-5.pdf 

 
Hasil pengujian menunjukkan adanya variasi kerentanan pada aplikasi OTP yang bervariasi, 
mulai dari tingkat tinggi (High) hingga kategori yang lebih ringan. Pada percobaan awal (OTP-1), 
ditemukan tiga temuan kategori "High", yang menunjukkan bahwa aplikasi masih sangat rentan 
pada tahap awal pengujian. Namun, setelah dilakukan rangkaian perbaikan, jumlah temuan 
kerentanan menurun secara signifikan pada percobaan berikutnya. Percobaan OTP-5 bahkan 
mencapai skor tertinggi yaitu 78 dengan peringkat "A", seperti ditunjukkan pada Gambar 10 
(MobSF Score pada OTP-2) dan Gambar 11 (MobSF Score pada OTP-5). 
 
Kerentanan tingkat tinggi yang terdeteksi pada pengujian pertama dan kedua (OTP-1 dan OTP-
2) berpotensi mengekspos data pengguna atau menyebabkan kerusakan fungsional pada 
aplikasi. Oleh karena itu, temuan ini harus segera diperbaiki agar menghindari potensi eksploitasi 
dan dampak serius terhadap keamanan sistem. Selain itu, MobSF juga mendeteksi sejumlah 

https://github.com/rahayuda/OTP-Evaluation/blob/master/Evaluation/OTP-1.apk
https://github.com/rahayuda/OTP-Evaluation/blob/master/Evaluation/OTP-1.pdf
https://github.com/rahayuda/OTP-Evaluation/blob/master/Evaluation/OTP-2.apk
https://github.com/rahayuda/OTP-Evaluation/blob/master/Evaluation/OTP-2.pdf
https://github.com/rahayuda/OTP-Evaluation/blob/master/Evaluation/OTP-3.apk
https://github.com/rahayuda/OTP-Evaluation/blob/master/Evaluation/OTP-3.pdf
https://github.com/rahayuda/OTP-Evaluation/blob/master/Evaluation/OTP-4.apk
https://github.com/rahayuda/OTP-Evaluation/blob/master/Evaluation/OTP-4.pdf
https://github.com/rahayuda/OTP-Evaluation/blob/master/Evaluation/OTP-5.apk
https://github.com/rahayuda/OTP-Evaluation/blob/master/Evaluation/OTP-5.pdf


 
JISKA (Jurnal Informatika Sunan Kalijaga) 
ISSN:2527–5836 (print) | 2528–0074 (online)  ■  24 

 
Artikel ini didistribusikan mengikuti lisensi Atribusi-NonKomersial CC BY-NC sebagaimana tercantum pada 
https://creativecommons.org/licenses/by-nc/4.0/. 

peringatan dan informasi yang terdeteksi. Namun, temuan ini tidak terlalu kritikal dan dapat 
diabaikan karena tidak memberikan dampak signifikan terhadap keamanan aplikasi. Fokus utama 
dalam perbaikan seharusnya adalah menghilangkan masalah dengan kerentanan kategori "High" 
yang berpotensi lebih membahayakan. 
 
Secara keseluruhan, hasil pengujian ini menunjukkan bahwa meskipun aplikasi OTP telah 
mengalami peningkatan dari waktu ke waktu, potensi kerentanannya tetap perlu menjadi 
perhatian utama, terutama karena aplikasi ini menangani data sensitif seperti kode OTP. 
Kerentanan tingkat tinggi, seperti penggunaan pengkodean yang kurang aman atau manajemen 
kunci yang tidak terlindungi dengan baik, dapat membuka celah bagi serangan yang mengancam 
integritas dan keamanan aplikasi. Implikasi praktis dari temuan ini adalah pentingnya penerapan 
keamanan secara menyeluruh dalam tahap pengembangan serta pelaksanaan pemindaian 
keamanan secara berkala setelah aplikasi dirilis, dengan fokus utama pada penghapusan 
kerentanan kategori "High". 
 

 
Gambar 10 Mobile Security Framework (MobSF) Score pada OTP-2 

 
Gambar 11 Mobile Security Framework (MobSF) Score pada OTP-5 



 
 JISKA (Jurnal Informatika Sunan Kalijaga) 
25  ■ Vol. 11, No. 1, JANUARI, 2026: 13 – 31 

 
Artikel ini didistribusikan mengikuti lisensi Atribusi-NonKomersial CC BY-NC sebagaimana tercantum pada 
https://creativecommons.org/licenses/by-nc/4.0/. 

 

 
Gambar 12 Perbandingan High Issues pada OTP-1 dan OTP-5 MobSF 

3.3 IAST (Interactive Application Security Testing) 

Pengujian Interactive Application Security Testing (IAST) dilakukan menggunakan AppSweep 
untuk mengevaluasi keamanan aplikasi saat dijalankan di perangkat atau emulator. AppSweep 
membantu memeriksa berbagai masalah keamanan seperti kebocoran data, kesalahan 
konfigurasi izin, dan penggunaan API yang tidak aman, dengan mengacu pada standar OWASP 
Mobile Top 10. Hasil pengujian ditampilkan dalam berbagai halaman seperti Issues, OWASP, 
Libraries, dan laporan hasil pemindaian IAST. Gambar 13 memperlihatkan tampilan halaman 
IAST pada percobaan OTP-5, sedangkan Tabel 5 menyajikan hasil evaluasi keseluruhan dari 
lima percobaan aplikasi OTP yang telah dilakukan.  

Tabel 5 Evaluasi OTP App dengan AppSweep 
Evaluation High Medium Low Issues OWASP Libraries Issues Grade 
OTP-1 2 8 4 14 14 125 0 Good 
OTP-2 1 8 4 13 13 126 0 Good 
OTP-3 0 8 4 12 12 125 0 Good 
OTP-4 0 8 4 12 12 125 0 Good 
OTP-5 0 6 3 9 9 95 0 Good 

https://appsweep.guardsquare.com/api/instrumented-apps/download?token=eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJVc2VySUQiOiIyOTUyYWEyZC1lMDdlLTRlZjEtYTY3YS02NTEzN2E3ODFmMzYiLCJJbnN0cnVtZW50ZUFwcElEIjoiNWFlY2YxZjktZmE3NS00YTZiLWJmYjYtZDRkOTc2Y2NjNGM3In0.J4_leb7_N0lkRvvSDyncoJi4Bh9GVBYje9b1WeFrr90
https://appsweep.guardsquare.com/builds/56a9aeb0-be53-4430-8b57-2495db30aca1
https://appsweep.guardsquare.com/api/instrumented-apps/download?token=eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJVc2VySUQiOiIyOTUyYWEyZC1lMDdlLTRlZjEtYTY3YS02NTEzN2E3ODFmMzYiLCJJbnN0cnVtZW50ZUFwcElEIjoiZDcwYTUxOWEtYWQ3OC00ZjA4LWFjMTYtYmYwMGM4OWMyNzY1In0.uFD4OHyIiSU2X5F_U8xAACgDofQr4iJUeub28A81QxA
https://appsweep.guardsquare.com/builds/a0171fb4-dd0d-460e-a60d-a3e6b9cc1aad
https://appsweep.guardsquare.com/api/instrumented-apps/download?token=eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJVc2VySUQiOiIyOTUyYWEyZC1lMDdlLTRlZjEtYTY3YS02NTEzN2E3ODFmMzYiLCJJbnN0cnVtZW50ZUFwcElEIjoiYzMwZGJiZjAtNzhhMy00NTkwLThmNDEtMWE5ODA3ZjJkYThiIn0.aRRP_qsMDKNIdL8devIOKF11HcGZskwG2oQrG1LEHEY
https://appsweep.guardsquare.com/builds/10da47b2-5548-468c-a91b-46c6612c6240
https://appsweep.guardsquare.com/api/instrumented-apps/download?token=eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJVc2VySUQiOiIyOTUyYWEyZC1lMDdlLTRlZjEtYTY3YS02NTEzN2E3ODFmMzYiLCJJbnN0cnVtZW50ZUFwcElEIjoiM2U3YzFkMTMtZGZhMS00M2YwLWJjODAtMzgwODY3YTlhZTVjIn0.TzYYzkWgJeoWrsSawXZ_81bwofc2UeOKCjBqPgTM30c
https://appsweep.guardsquare.com/builds/2ae61c63-feb5-4cef-8738-467c4e504758
https://appsweep.guardsquare.com/api/instrumented-apps/download?token=eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJVc2VySUQiOiIyOTUyYWEyZC1lMDdlLTRlZjEtYTY3YS02NTEzN2E3ODFmMzYiLCJJbnN0cnVtZW50ZUFwcElEIjoiN2RhMzMzNDMtNjY5YS00NDFmLWFkMmYtMjJmMzI1YjNiMTc1In0.6fN7Hm83wyUHbe_5v-xUPCY5sfAokN_pruPdH7BQPWU
https://appsweep.guardsquare.com/builds/50823256-2ae2-4ba0-bb61-139fe9054868


 
JISKA (Jurnal Informatika Sunan Kalijaga) 
ISSN:2527–5836 (print) | 2528–0074 (online)  ■  26 

 
Artikel ini didistribusikan mengikuti lisensi Atribusi-NonKomersial CC BY-NC sebagaimana tercantum pada 
https://creativecommons.org/licenses/by-nc/4.0/. 

 
Gambar 13 Halaman IAST pada OTP-5 

Berdasarkan hasil pengujian, aplikasi OTP secara keseluruhan memperoleh peringkat "Good" 
dalam hal kerentanannya. Tidak ada temuan yang masuk dalam kategori "Critical", yang 
menunjukkan bahwa aplikasi memiliki tingkat keamanan yang relatif baik. Namun, pada 
percobaan pertama dan kedua (OTP-1 dan OTP-2), terdapat temuan dalam kategori High yang 
mencakup potensi kebocoran data dan masalah izin yang signifikan. Kerentanan ini dapat 
memberikan akses yang tidak sah ke data sensitif atau memberikan hak akses yang salah 
kepada pengguna atau aplikasi pihak ketiga.  
 
Seiring berjalannya pengujian, hasil menunjukkan peningkatan yang signifikan pada percobaan 
OTP-3 hingga OTP-5, di mana tidak ada lagi temuan dalam kategori High. Hal ini menunjukkan 
bahwa langkah-langkah perbaikan yang dilakukan berhasil mengatasi kerentanannya yang lebih 
serius. Secara kuantitatif, hasil pengujian menunjukkan bahwa jumlah kerentanannya berkurang 
secara signifikan dari 14 masalah pada OTP-1 menjadi 9 masalah pada OTP-5, seperti yang 
ditunjukkan pada Gambar 14. Hal ini menandakan kemajuan yang jelas dalam mengurangi 
jumlah dan tingkat kerentanannya. Sementara itu, Gambar 15 menggambarkan perbandingan 
jumlah High Issues antara OTP-1 dan OTP-5, yang menunjukkan penurunan signifikan setelah 
penerapan perbaikan.  



 
 JISKA (Jurnal Informatika Sunan Kalijaga) 
27  ■ Vol. 11, No. 1, JANUARI, 2026: 13 – 31 

 
Artikel ini didistribusikan mengikuti lisensi Atribusi-NonKomersial CC BY-NC sebagaimana tercantum pada 
https://creativecommons.org/licenses/by-nc/4.0/. 

 
Gambar 14 Grafik Evaluasi OTP pada AppSweep dalam 5 Kali Percobaan  

 

 

Gambar 15 Perbandingan High Issues pada OTP-1 dan OTP-5 AppSweep 



 
JISKA (Jurnal Informatika Sunan Kalijaga) 
ISSN:2527–5836 (print) | 2528–0074 (online)  ■  28 

 
Artikel ini didistribusikan mengikuti lisensi Atribusi-NonKomersial CC BY-NC sebagaimana tercantum pada 
https://creativecommons.org/licenses/by-nc/4.0/. 

Meskipun sebagian besar kerentanannya terdeteksi pada kategori Medium dan Low, masalah ini 
tetap perlu diperhatikan. Dalam konteks aplikasi OTP, bahkan yang dianggap rendah bisa 
dimanfaatkan oleh peretas untuk mengeksploitasi celah keamanan, terutama yang berkaitan 
dengan kebocoran data atau pengaturan izin aplikasi. Misalnya, kebocoran data dapat 
menyebabkan informasi pribadi pengguna terekspos, sementara masalah izin dapat memberi 
akses yang tidak sah kepada pihak ketiga. Oleh karena itu, pengembang harus memastikan 
semua jenis kerentanannya, baik yang tinggi maupun rendah, ditangani dengan serius guna 
menjaga integritas dan keamanan aplikasi. Menghilangkan kerentanannya di kategori High dan 
memastikan bahwa IAST Issues telah diatasi sepenuhnya akan sangat meningkatkan keamanan 
aplikasi secara keseluruhan. 

3.4 Perbandingan SAST dan IAST 

Analisis Perbandingan SAST dan IAST menunjukkan perbedaan fokus dan keunggulan masing-
masing metode. SAST cocok digunakan untuk deteksi dini selama proses pengembangan dan 
review kode, sementara IAST lebih efektif untuk mendeteksi eksploitasi di dunia nyata, meskipun 
lebih kompleks dan memerlukan runtime testing. Dalam konteks aplikasi mobile, kombinasi SAST 
dan IAST dapat meningkatkan keamanan secara menyeluruh dengan mengidentifikasi 
kelemahan sejak tahap awal pengembangan hingga pengujian di lingkungan runtime. Tabel 6 
menyajikan perbandingan ringkas antara kedua metode ini. 

Tabel 6 Perbandingan SAST dan IAST 

Aspek SAST (Static Application Security 
Testing) 

IAST (Interactive Application 
Security Testing) 

Metode 
Analisis 

Analisis kode sumber, bytecode, atau 
biner tanpa menjalankan aplikasi. 

Menguji aplikasi saat berjalan, 
memantau input, output, dan 
eksekusi runtime. 

Cakupan 
Keamanan 

Menemukan kerentanan dalam kode 
sebelum aplikasi dijalankan. 

Mendeteksi kelemahan keamanan 
yang hanya muncul dalam kondisi 
runtime. 

Waktu Deteksi Dapat dilakukan lebih awal dalam 
pengembangan. 

Mengidentifikasi kerentanan saat 
aplikasi berjalan, cocok untuk 
tahap pengujian akhir. 

Akurasi Cenderung menghasilkan false 
positives karena tidak 
mempertimbangkan kondisi runtime. 

Lebih akurat dalam menemukan 
eksploitasi nyata karena berbasis 
eksekusi. 

Kompleksitas Relatif mudah diterapkan, tidak 
memerlukan eksekusi aplikasi. 

Memerlukan lingkungan runtime 
yang mendukung pengujian 
interaktif. 

Kecepatan Lebih cepat karena tidak memerlukan 
eksekusi aplikasi. 

Lebih lambat karena harus 
berjalan bersamaan dengan 
aplikasi. 

 
Hasil evaluasi juga divisualisasikan dalam line chart yang menunjukkan tren penurunan jumlah 
isu keamanan dari OTP-1 hingga OTP-5, seperti terlihat pada Gambar 16. AppSweep secara 
konsisten mendeteksi lebih banyak isu dibandingkan MobSF, tetapi keduanya menunjukkan pola 
penurunan yang serupa, mencerminkan perbaikan keamanan pada setiap versi OTP. MobSF 
mengalami penurunan lebih tajam, dari 13 isu pada OTP-1 menjadi hanya 4 pada OTP-5, 
sementara AppSweep berkurang lebih bertahap, dari 14 menjadi 9. Hal ini menunjukkan bahwa 
MobSF cenderung lebih sensitif dalam mendeteksi perbaikan keamanan, sementara AppSweep 
mempertahankan standar deteksi yang lebih ketat. Kombinasi kedua metode ini dapat 
memberikan analisis yang lebih komprehensif, dengan MobSF mengidentifikasi celah yang dapat 
segera diperbaiki, sementara AppSweep memastikan evaluasi keamanan tetap menyeluruh 
hingga iterasi terakhir. 
 



 
 JISKA (Jurnal Informatika Sunan Kalijaga) 
29  ■ Vol. 11, No. 1, JANUARI, 2026: 13 – 31 

 
Artikel ini didistribusikan mengikuti lisensi Atribusi-NonKomersial CC BY-NC sebagaimana tercantum pada 
https://creativecommons.org/licenses/by-nc/4.0/. 

 
Gambar 16 Tren Pengurangan Total Issues 

Hasil penelitian ini dapat diadaptasi dalam berbagai konteks yang memerlukan tingkat keamanan 
tinggi, seperti sistem perbankan dan e-commerce. Dalam perbankan digital, kombinasi SAST dan 
IAST dapat digunakan untuk mendeteksi dan mencegah eksploitasi keamanan pada aplikasi 
mobile banking, terutama dalam melindungi transaksi pengguna dan mencegah ancaman seperti 
man-in-the-middle attacks atau injeksi kode berbahaya. SAST dapat memastikan keamanan 
kode sejak tahap pengembangan, sementara IAST membantu mengidentifikasi kelemahan yang 
hanya muncul saat aplikasi berjalan, seperti vulnerable API calls atau autentikasi yang tidak 
aman. Dalam e-commerce, metode ini dapat diterapkan untuk menjaga keamanan transaksi 
pelanggan, terutama dalam sistem pembayaran online yang sering menjadi target serangan 
seperti phishing atau carding. Dengan menerapkan pendekatan serupa yang digunakan dalam 
penelitian ini, sistem perbankan dan e-commerce dapat meningkatkan ketahanan terhadap 
serangan siber serta memastikan pengalaman pengguna yang aman dan terpercaya. 

4. KESIMPULAN 

Penelitian ini berhasil mengimplementasikan OTP Firebase berbasis email pada aplikasi Android 
dengan pengujian keamanan menggunakan SAST (MobSF) dan IAST (AppSweep), yang efektif 
dalam mendeteksi kerentanan. Hasil pengujian menunjukkan perbaikan signifikan, di mana 
temuan kerentanannya berkurang dari 3 temuan tingkat tinggi pada percobaan pertama (OTP-1) 
menjadi 0 pada percobaan kelima (OTP-5), dengan skor aplikasi meningkat dari 43 (B) menjadi 
78 (A) di MobSF. Begitu juga pada AppSweep, meskipun kerentanannya pada OTP-1 dan OTP-
2 ditemukan pada kategori High, tidak ada temuan serupa pada OTP-3 hingga OTP-5, dengan 
jumlah total masalah menurun dari 14 menjadi 9. Keterbatasan penelitian ini mencakup cakupan 
dataset yang terbatas dan potensi bias alat pengujian, yang dapat diperbaiki dengan 
menggunakan dataset lebih besar dan metode tambahan seperti machine learning pada 
penelitian selanjutnya. Penelitian lanjutan juga akan mengadopsi model DevSecOps dengan 
IAST di tahap pengembangan (Dev) dan RASP di tahap operasi (Ops) untuk meningkatkan 
keamanan aplikasi lebih lanjut. Saat ini penelitian sudah mengintegrasikan RASP, namun masih 
pada level dasar dengan ProGuard. Metode machine learning mungkin akan diterapkan pada 
bagian Operasi (Ops), seperti pada IPS (Intrusion Prevention Systems), IDS (Intrusion Detection 
Systems), dan RASP (Runtime Application Self-Protection). Implikasi lebih luas dari penelitian ini 
adalah memberikan rekomendasi bagi pengembang aplikasi mobile untuk mengadopsi 
pendekatan pengujian keamanan yang lebih proaktif, dengan memanfaatkan kombinasi SAST 
dan IAST dalam siklus pengembangan perangkat lunak. Selain itu, penelitian masa depan dapat 
mengeksplorasi integrasi kecerdasan buatan (Artificial Intelligence) untuk otomatisasi deteksi 
kerentanan OTP serta menganalisis keamanan pada OTP berbasis biometrik. Dengan 
pendekatan ini, diharapkan sistem autentikasi berbasis OTP dapat semakin aman dan lebih 
adaptif terhadap berbagai ancaman siber di masa depan. 

0

5

10

15

OTP 1 OTP 2 OTP 3 OTP 4 OTP 5

Tren Pengurangan Total Issues

AppSweep MobSF



 
JISKA (Jurnal Informatika Sunan Kalijaga) 
ISSN:2527–5836 (print) | 2528–0074 (online)  ■  30 

 
Artikel ini didistribusikan mengikuti lisensi Atribusi-NonKomersial CC BY-NC sebagaimana tercantum pada 
https://creativecommons.org/licenses/by-nc/4.0/. 

DAFTAR PUSTAKA 

Asih, M. S., & Hasibuan, A. Z. (2023). Pengamanan Kunci Pintu Brankas Menggunakan 
Kriptografi One Time Pad (OTP) Berbasis Android. Explorer, 3(2), 58–68. 
https://doi.org/10.47065/explorer.v3i2.738 

Chimuco, F. T., Sequeiros, J. B. F., Lopes, C. G., Simões, T. M. C., Freire, M. M., & Inácio, P. R. 
M. (2023). Secure Cloud-Based Mobile Apps: Attack Taxonomy, Requirements, 
Mechanisms, Tests and Automation. International Journal of Information Security, 22(4), 
833–867. https://doi.org/10.1007/s10207-023-00669-z 

Danthy, R., Pratham Pai, K., & Rao, V. (2024). Secure Online Banking Authentication System 
Using Time Bound Password. 2024 IEEE International Conference on Computing, Power 
and Communication Technologies (IC2PCT), 130–135. 
https://doi.org/10.1109/IC2PCT60090.2024.10486295 

Ikram, M., Sentana, I. W. B., Asghar, H., Kaafar, M. A., & Kepkowski, M. (2025). More Than Just 
a Random Number Generator! Unveiling the Security and Privacy Risks of Mobile OTP 
Authenticator Apps. In M. Barhamgi, H. Wang, & X. Wang (Eds.), Web Information Systems 
Engineering – WISE 2024 (pp. 177–192). Springer Nature Singapore. 
https://doi.org/10.1007/978-981-96-0576-7_14 

Keteku, J., Dameh, G. O., Mante, S. A., Mensah, T. K., Amartey, S. L., & Diekuu, J.-B. (2024). 
Detection and Prevention of Malware in Android Mobile Devices: A Literature Review. 
International Journal of Intelligence Science, 14(04), 71–93. 
https://doi.org/10.4236/ijis.2024.144005 

Li, K., Chen, S., Fan, L., Feng, R., Liu, H., Liu, C., Liu, Y., & Chen, Y. (2023). Comparison and 
Evaluation on Static Application Security Testing (SAST) Tools for Java. Proceedings of the 
31st ACM Joint European Software Engineering Conference and Symposium on the 
Foundations of Software Engineering, 921–933. https://doi.org/10.1145/3611643.3616262 

Lim, J. G. Q., Kwok, Z. Y., Soon, I., Yong, J. X., Song Yuhao, S., Binte Rosley, S. H., & 
Balachandran, V. (2024). A-COPILOT: Android Covert Operation for Private Information 
Lifting and OTP Theft: A Study on How Malware Masquerading as Legitimate Applications 
Compromise Security and Privacy. Proceedings of the Fourteenth ACM Conference on Data 
and Application Security and Privacy, 155–157. https://doi.org/10.1145/3626232.3658638 

Lubis, D. J., & Riswanto, A. N. (2024). Implementasi Algoritma Random Forest untuk Optimasi 
Keamanan Autentikasi One-Time Password (OTP). Informatech: Jurnal Ilmiah Informatika 
dan Komputer, 1(1), 23–29. https://doi.org/10.69533/eyp7ag46 

Moon, I. T., Mimi, A., & Rahman Mridha, Md. M. (2023). Cryptographic Analysis: Popular Social 
Media Applications and Mitigations of Vulnerabilities. 2023 26th International Conference 
on Computer and Information Technology (ICCIT), 1–6. 
https://doi.org/10.1109/ICCIT60459.2023.10441090 

Nutalapati, V. (2023). Automated Security Testing for Mobile Apps: Tools, Techniques, and Best 
Practices. International Engineering & Applied Sciences (IRJEAS), 11(1), 26. 
https://doi.org/10.55083/irjeas.2023.v11i01004 

Pagano, F., Romdhana, A., Caputo, D., Verderame, L., & Merlo, A. (2023). SEBASTiAn: A Static 
and Extensible Black-Box Application Security Testing Tool for iOS and Android 
Applications. SoftwareX, 23, Article ID: 101448. https://doi.org/10.1016/j.softx.2023.101448 

Pargaonkar, S. (2023). Advancements in Security Testing: A Comprehensive Review of 
Methodologies and Emerging Trends in Software Quality Engineering. International Journal 
of Science and Research (IJSR), 12(9), 61–66. https://doi.org/10.21275/SR23829090815 

Schleier, S., Holguera, C., Mueller, B., & Willemsen, J. (2024). OWASP Mobile Application 
Security Testing Guide (MASTG). The OWASP Foundation. 
https://mas.owasp.org/MASTG/ 

Schleier, S., Holguera, C., Mueller, B., Willemsen, J., & Beckers, J. (2024). OWASP Mobile 
Application Security Verification Standard v2.1.0. The OWASP Foundation. 
https://mas.owasp.org/MASVS/ 

Smyčka, M. (2024). Evaluation and Application of SAST Tools [Masarykova Univerzita]. 
https://is.muni.cz/th/j4bxg/smycka_thesis.pdf 



 
 JISKA (Jurnal Informatika Sunan Kalijaga) 
31  ■ Vol. 11, No. 1, JANUARI, 2026: 13 – 31 

 
Artikel ini didistribusikan mengikuti lisensi Atribusi-NonKomersial CC BY-NC sebagaimana tercantum pada 
https://creativecommons.org/licenses/by-nc/4.0/. 

Sonnekalb, T., Knaust, C.-T., Gruner, B., Brust, C.-A., Heinze, T. S., Kurnatowski, L. von, 
Schreiber, A., & Mäder, P. (2023). A Static Analysis Platform for Investigating Security 
Trends in Repositories. 2023 IEEE/ACM 1st International Workshop on Software 
Vulnerability (SVM), 1–5. https://doi.org/10.1109/SVM59160.2023.00005 

Stanciu, A.-M. (2023). Theoretical Study of Security for a Software Product. In Lecture Notes in 
Networks and Systems (Vol. 578, pp. 233–242). https://doi.org/10.1007/978-981-19-7660-
5_20 

Sutter, T., Kehrer, T., Rennhard, M., Tellenbach, B., & Klein, J. (2024). Dynamic Security Analysis 
on Android: A Systematic Literature Review. IEEE Access, 12, 57261–57287. 
https://doi.org/10.1109/ACCESS.2024.3390612 

Taqwim, M. A., Kusyanti, A., & Siregar, R. A. (2021). Implementasi Algoritme Speck untuk 
Enkripsi One-Time Password pada Two-Factor Authentication. Jurnal Pengembangan 
Teknologi Informasi dan Ilmu Komputer, 5(7), 3103–3111. https://j-ptiik.ub.ac.id/index.php/j-
ptiik/article/view/9488 

Wibawa, S., Suryanto, S., & Ningsih, R. (2024). Perlindungan Data Digital Dengan Time-Based 
One-Time Password (TOTP). INSANtek, 5(1), 30–36. 
https://doi.org/10.31294/insantek.v5i1.3495 

  


