
JISKA (Jurnal Informatika Sunan Kalijaga)
Vol. 11, No. 1, JANUARY, 2026, Pp. 98 – 113
ISSN: 2527 – 5836 (print) | 2528 – 0074 (online)

This article is distributed following Atribution-NonCommersial CC BY-NC as stated on
https://creativecommons.org/licenses/by-nc/4.0/.

Comparative Analysis of Camellia and AES Across File Sizes and
Types

Teja Endra Eng Tju (1)*, Fauzi Alfadhillah (2)

Department of Information Systems, Budi Luhur University, Jakarta, Indonesia
e-mail : teja.endraengtju@budiluhur.ac.id, 2311501767@student.budiluhur.ac.id.

* Corresponding author.
This article was submitted on 30 July 2025, revised on 15 December 2025, accepted on 16

December 2025, and published on 25 January 2026.

Abstract
Data security is a critical aspect of modern information systems that requires processing
cryptographic efficiency and resilience. This study compares two widely used symmetric
encryption algorithms, named Camellia and AES, based on their performance and resistance to
standard attack methods. An experimental approach was applied using 72 files across eight
commonly used formats (*.mp3, *.jpg, *.png, *.pdf, *.docx, *.xls, *.pptx, and .txt) in three
predefined sizes: 100 KB, 1 MB, and 10 MB. Each file underwent encryption and decryption in a
controlled environment, with metrics such as processing time, CPU usage, and RAM consumption
recorded. Simulated Dictionary, Birthday, and Brute-Force attacks were conducted to assess
algorithm robustness. Results show that AES performs faster, especially on large files, but with
higher memory usage. Camellia demonstrated more consistent RAM usage and stronger
resistance, successfully withstanding all attacks except one brute-force case on a small plaintext
file. AES suffered multiple breaches on structured files of smaller sizes. The findings suggest that
algorithm selection should consider workload characteristics and system constraints. The main
contribution of this research lies in its comprehensive dataset and empirical comparison, providing
practical insights to support encryption algorithm choices in real-world applications.

Keywords: Cryptographic Efficiency, Data Encryption, Cryptanalysis, Algorithm Security,
Encryption Performance

Abstrak
Keamanan data merupakan aspek krusial dalam sistem informasi modern yang menuntut
efisiensi pemrosesan sekaligus ketahanan kriptografis. Penelitian ini membandingkan dua
algoritma enkripsi simetris yang banyak digunakan, yaitu Camellia dan AES, berdasarkan kinerja
dan ketahanannya terhadap metode serangan umum. Pendekatan eksperimental diterapkan
pada 72 file dalam delapan format umum (*.mp3, *.jpg, *.png, *.pdf, *.docx, *.xls, *.pptx, dan .txt)
dalam tiga ukuran: 100 KB, 1 MB, dan 10 MB. Setiap file dienkripsi dan didekripsi dalam
lingkungan terkontrol, dengan pencatatan waktu proses, penggunaan CPU, dan konsumsi RAM.
Serangan Dictionary, Birthday, dan Brute-Force disimulasikan untuk menilai ketahanan masing-
masing algoritma. Hasil menunjukkan bahwa AES lebih cepat, terutama pada file berukuran
besar, namun memerlukan memori lebih tinggi. Camellia menunjukkan penggunaan RAM yang
lebih stabil dan ketahanan lebih kuat, berhasil menahan semua serangan kecuali satu kasus
brute-force pada file teks kecil. AES mengalami beberapa kebocoran pada file terstruktur dengan
ukuran kecil. Temuan ini menunjukkan bahwa pemilihan algoritma harus mempertimbangkan
karakteristik beban kerja dan batasan sistem. Kontribusi utama dari penelitian ini adalah
penyediaan dataset komprehensif dan perbandingan empiris yang memberikan wawasan praktis
untuk mendukung pemilihan algoritma enkripsi dalam berbagai skenario aplikasi.

Kata Kunci: Efisiensi Kriptografi, Enkripsi Data, Kriptanalisis, Keamanan Algoritma,
Kinerja Enkripsi

1. INTRODUCTION

Data security has become a primary concern as information technology continues to evolve and
connects various global systems. The use of cryptographic algorithms to protect sensitive data is
the main way to maintain the confidentiality and integrity of information (Manullang, 2023).

 JISKA (Jurnal Informatika Sunan Kalijaga)
99 ■ Vol. 11, No. 1, JANUARY, 2026: 98 – 113

This article is distributed following Atribution-NonCommersial CC BY-NC as stated on
https://creativecommons.org/licenses/by-nc/4.0/.

Cryptographic algorithms such as Camellia and AES (Advanced Encryption Standard) are widely
used to protect sensitive data by ensuring confidentiality and integrity (Sulaiman & Hammood,
2025). Camellia, developed by NTT and Mitsubishi Electric, provides a flexible and efficient
structure applicable across diverse platforms (Matsui et al., 2015), while AES, standardized by
NIST, is known for its simplicity, strong security, and widespread adoption (Azhari et al., 2022).
This research specifically focuses on comparing the performance of Camellia and AES in securing
small-to-medium-sized files on specific devices. The study evaluates encryption and decryption
efficiency in terms of run time, resource consumption, and robustness against common
cyberattacks, such as Dictionary Attack (Adams, 2021; Alkhwaja et al., 2023; Hranický et al.,
2025), Birthday Attack (Chavan et al., 2024; Fahdi & Ahmed, 2020), and Brute-force Attack
(Hamza & Al-Janabi, 2024; Sarmila & Manisekaran, 2022; Verma et al., 2022). The choice of
these two algorithms is justified by their prevalence in modern cryptographic applications and
contrasting design philosophies, offering insight into optimal algorithm selection for practical data
protection. In practical deployments, encryption is rarely evaluated only by theoretical strength; it
must also meet operational constraints such as throughput, memory budget, and predictable
behavior across heterogeneous data formats. A system that encrypts files quickly but exhibits
higher memory demand or inconsistent robustness under common password-guessing and
collision-based attack scenarios may create hidden security and performance risks in real
applications. Therefore, evaluating efficiency and robustness together across diverse file
structures is essential for making defensible design choices rather than relying on one-size-fits-
all assumptions.

Previous research on Camellia and AES cryptographic algorithms has extensively covered their
security and resilience against cryptographic attacks. AES has become the international standard
due to its strong encryption capabilities and broad acceptance in various security applications
(Bibiola et al., 2023). Camellia offers comparable security levels with a more flexible and modular
structure, facilitating implementation across different platforms and scenarios (Li et al., 2024).
Applications of Camellia encryption have been explored in areas such as authentication for
wireless robotics and mobile platforms (Nithishma et al., 2022; Rasheed et al., 2023), quantum
implementations with S-box optimizations (ZhenQiang et al., 2023), and security models for e-
banking and Internet of Things (IoT) devices (Mohammed et al., 2025; Rashidi, 2021). Meanwhile,
AES has been applied in securing digital images (Haris et al., 2023), medical records (Tanjung,
2022), financial transactions (Andriyanto & Sukmasetya, 2022), cloud computing (Dwina et al.,
2023), and IoT healthcare networks (Rachmayanti & Wirawan, 2022). Comparative studies
between Camellia and AES include quantum circuit designs (Wei et al., 2023), digital image
encryption evaluations (Hidayati et al., 2021), and security implementations in 5G networks and
IoT frameworks (Arabul et al., 2023; Muthavhine & Sumbwanyambe, 2023; Ning et al., 2020;
Panahi & Bayılmış, 2023; Rasheed et al., 2024). Although prior studies have compared Camellia
and AES in specific contexts (e.g., images, IoT frameworks, or specialized implementations),
many evaluations are scoped to a narrow data type, focus on a single dimension (performance
or security), or do not jointly examine how file structure and size interact with both resource usage
and attack outcomes. This study addresses that gap by conducting a controlled and reproducible
experiment across multiple real-world file formats and standardized size categories, reporting
both system-level efficiency metrics and empirical robustness under common attack simulations.
The resulting workflow is described in the Methods section. This study investigates efficiency
differences between Camellia and AES (runtime, CPU usage, and RAM consumption) across file
types and sizes, examines how file structure and size relate to empirical outcomes in dictionary,
birthday, and brute-force attack simulations, and derives actionable guidelines for algorithm
selection under different operational constraints.

The contributions of this paper are threefold: it provides a controlled empirical dataset and test
protocol covering 72 files across eight standard formats and three standardized size categories
to enable consistent comparison; it conducts a joint evaluation of efficiency (run time, CPU usage,
and RAM consumption) and empirical robustness under dictionary, birthday, and brute-force
attack simulations within a single experimental pipeline; and it derives evidence-based insights
into how file type or structure and size shape performance–security trade-offs, translating these

JISKA (Jurnal Informatika Sunan Kalijaga)
ISSN:2527–5836 (print) | 2528–0074 (online) ■ 100

This article is distributed following Atribution-NonCommersial CC BY-NC as stated on
https://creativecommons.org/licenses/by-nc/4.0/.

findings into practical recommendations for encryption algorithm selection in real-world systems
implementation.

2. METHODS

This study employs an experimental approach to evaluate the performance of the Camellia and
AES algorithms based on the stages illustrated in Figure 1. The process involves collecting data
or files comprising various file types, followed by the encryption and decryption of these files using
Camellia and AES. Next, Attack Testing on Encrypted Files is performed to assess resistance
against different cryptographic attacks. Then, the Performance Analysis of both algorithms is
conducted to compare their efficiency and robustness. The study concludes with an Evaluation
and Conclusion stage that provides insights into the strengths and limitations of each algorithm
in the context of data protection.

The stage begins with the Data or Files Collection, which involves 72 files across eight widely
used formats: *.mp3, *.jpg, *.png, *.pdf, *.docx, *.xls, *.pptx, and *.txt. This diverse selection aims
to assess how the Camellia and AES algorithms handle data with varying structures in sizes and
types. Files were randomly collected from various sources. For each file type, three
predefined sizes were prepared: 100 KB, 1 MB, and 10 MB, including audio (.mp3), image
(.jpg, .png), document (.pdf, .docx, .xls, .pptx), and plaintext (.txt).

Figure 1 Research Method Stages

Table 1 presents the distribution of file types and predefined sizes (100 KB, 1 MB, and 10 MB),
which will be utilized in the encryption and decryption experiments to evaluate the efficiency and
robustness of Camellia and AES across various data types and file structures. This structured
dataset ensures a balanced and systematic representation of file categories and size variations,
providing a consistent basis for fair comparison and reliable performance measurement across
all test cases.

After data collection, the study proceeds to the File Encryption and Decryption stage using
Camellia and AES. All tests were conducted on a laptop with an AMD Ryzen 7 5800H processor,
16GB RAM, and an NVIDIA GeForce RTX 3050 Ti GPU, running Windows 11. The files used in
the experiment vary in format and size, each encrypted and decrypted using a 256-bit key,
selected to comply with modern cryptographic standards against various cryptanalysis attacks
(Housley & Schaad, 2020; Kato & Moriai, 2013). A strong password was used to derive each

1. Data or
Files

Collec0on

2. Encryp0on
and

Decryp0on of
Files using

Camellia and
AES

3. A>ack
Tes0ng on
Encrypted

Files

4.
Performance

Analysis
Camellia and

AES

5. Evalua0on
and

Conclusion

 JISKA (Jurnal Informatika Sunan Kalijaga)
101 ■ Vol. 11, No. 1, JANUARY, 2026: 98 – 113

This article is distributed following Atribution-NonCommersial CC BY-NC as stated on
https://creativecommons.org/licenses/by-nc/4.0/.

encryption key (Patra & Patra, 2021). The encryption and decryption processes are carried out
using a simple web-based application developed in-house with the PyCryptodome library (A et
al., 2022; G et al., 2022), which records run time, CPU Usage, and RAM Usage. These
procedures allow observation of how each algorithm handles different file types and workloads,
highlighting differences in processing efficiency and consistency. Figure 2 presents the encryption
flow for both algorithms.

Table 1 Distribution Files

Types Count by Predefined Sizes Total 100 KB 1 MB 10 MB
*.mp3 3 3 3 9
*.jpg 3 3 3 9
*.png 3 3 3 9
*.pdf 3 3 3 9
*.docx 3 3 3 9
*.xls 3 3 3 9
*.pptx 3 3 3 9
*.txt 3 3 3 9

Total Data 72

Figure 2 Encryption Process Flow of Camellia and AES Algorithms

The next stage is Attack Testing on Encrypted Files to assess each algorithm's robustness against
common cryptographic threats. This study simulated Dictionary, Birthday, and Brute-Force
attacks and recorded the attack time and outcome for each test case. These simulations identify
potential weaknesses and determine how each algorithm can withstand unauthorized decryption

Start

Input Data

Camellia
Ini0aliza0on

(Key Expansion)

Data Division
(Feistel)

Subs0tu0on-
Permuta0on (SPN)

and 256-bit
Round Key

Encrypted
Output Data

End

AES Ini0aliza0on
and Round Key

Genera0on

Data Ini0aliza0on
Block (Add 256-bit

Round Key)

Encryp0on
(SubBytes,
ShiMRows,

MixColumns)

Encrypted
Output Data

JISKA (Jurnal Informatika Sunan Kalijaga)
ISSN:2527–5836 (print) | 2528–0074 (online) ■ 102

This article is distributed following Atribution-NonCommersial CC BY-NC as stated on
https://creativecommons.org/licenses/by-nc/4.0/.

attempts. Specifically, the study examines whether specific patterns in the encryption process
can be exploited to accelerate decryption without the proper key.

The fourth stage is Performance Analysis of Camellia and AES from both efficiency and
robustness perspectives. Efficiency was measured using run time, CPU usage, and RAM
consumption during encryption and decryption. Robustness was evaluated based on whether
encrypted outputs could be successfully compromised under the three simulated attack settings.
The results provide a comprehensive view of each algorithm’s capabilities in handling diverse
data efficiently and securely under varying conditions.

The final stage is Evaluation and Conclusion based on all obtained results. In this stage, the study
will summarize the strengths and weaknesses of each algorithm in terms of efficiency and
security. The evaluation results will identify the most suitable algorithm for data protection
purposes. These conclusions are expected to provide a solid foundation for selecting a
cryptographic algorithm that aligns with specific security requirements.

3. RESULTS AND DISCUSSION

The data collection results comprise 72 files across eight file types, with three predefined size
categories. Table 2 presents three sample files for each predefined size category, labeled File 1,
File 2, and File 3, with actual sizes varying within a ±5% tolerance range. The use of three files
per size category serves multiple purposes. It ensures consistent and reliable results within each
size group, captures minor variations in file structure and content that may affect processing, and
helps mitigate potential bias from relying on a single file.

Table 2 Files Distribution and Variation

Types Predefined
Sizes

Actual Sizes
File 1 File 2 File 3

*.mp3
100 KB 102 KB 103 KB 102 KB

1 MB 1.00 MB 1.04 MB 1.00 MB
10 MB 10.03 MB 10.03 MB 10.04 MB

*.jpg
100 KB 105 KB 100 KB 100 KB

1 MB 1.05 MB 1.05 MB 1.00 MB
10 MB 10.03 MB 10.01 MB 10.02 MB

*.png
100 KB 101 KB 101 KB 101 KB

1 MB 1.01 MB 1.00 MB 1.01 MB
10 MB 10.02 MB 10.02 MB 10.04 MB

*.pdf
100 KB 100 KB 100 KB 101 KB

1 MB 1.04 MB 1.05 MB 1.00 MB
10 MB 10.00 MB 10.01 MB 10.01 MB

*.docx
100 KB 100 KB 104 KB 105 KB

1 MB 1.02 MB 1.01 MB 1.01 MB
10 MB 10.01 MB 10.05 MB 10.04 MB

*.xls

100 KB 100 KB 104 KB 100 KB
1 MB 1.00 MB 1.01 MB 1.01 MB

10 MB 10.04 MB 10.02 MB 10.01 MB

*.pptx
100 KB 104 KB 105 KB 100 KB

1 MB 1.00 MB 1.05 MB 1.05 MB
10 MB 10.04 MB 10.04 MB 10.04 MB

*.txt
100 KB 101 KB 103 KB 100 KB

1 MB 1.01 MB 1.00 MB 1.01 MB
10 MB 10.05 MB 10.05 MB 10.02 MB

The encryption and decryption efficiency of Camellia and AES was evaluated using Run Time,
CPU usage, and RAM consumption. Run Time refers to the time taken to complete the encryption
or decryption process, CPU Usage indicates the percentage of processor resources used during

 JISKA (Jurnal Informatika Sunan Kalijaga)
103 ■ Vol. 11, No. 1, JANUARY, 2026: 98 – 113

This article is distributed following Atribution-NonCommersial CC BY-NC as stated on
https://creativecommons.org/licenses/by-nc/4.0/.

execution, and RAM Consumption reflects the amount of memory utilized throughout the
operation. To ensure a representative comparison, the values for each metric were averaged per
file type using data from three files in every predefined size category, since the evaluation results
from File 1, File 2, and File 3 showed consistent values that indicate stable performance.
Measurements across formats and sizes were also relatively uniform within each group, with no
significant deviations, which supports the validity of the averaged values.

The encryption results are presented in Table 3, which shows the average Run Time, CPU Usage,
and RAM Consumption for each file type and predefined size. To maintain unit consistency and
simplify numerical comparison, file sizes were defined as 100 KB, 1024 KB, and 10240 KB instead
of mixed units with 1MB and 10MB. These metrics illustrate how each algorithm's performance
responds to increasing file sizes, offering a clearer view of their efficiency and resource usage
during encryption.

Table 3 Summary of Encryption Process (Averaged)

Types Predefined Sizes Run Time (s) CPU Usage (%) RAM Usage (MB)
Camellia AES Camellia AES Camellia AES

*.mp3 100 KB 260.61 75.83 22.37 17.00 24.72 13.49
 1024 KB 458.64 140.65 28.49 21.22 31.76 24.33
 10240 KB 646.16 217.75 32.11 27.59 34.81 26.66
*.jpg 100 KB 137.59 77.30 18.34 21.12 21.54 16.46
 1024 KB 349.24 147.29 20.64 24.28 24.30 22.83
 10240 KB 524.70 197.32 23.62 27.75 25.57 26.77
*.png 100 KB 104.53 93.44 17.93 20.80 22.87 17.96
 1024 KB 305.27 136.36 22.13 24.59 25.43 24.85
 10240 KB 479.15 203.79 24.32 29.04 27.87 27.64
*.pdf 100 KB 152.16 192.21 23.17 25.39 21.39 25.61
 1024 KB 200.60 256.51 25.11 31.47 26.35 32.83
 10240 KB 392.14 340.52 29.29 36.25 27.99 35.03
*.docx 100 KB 91.98 94.97 22.13 20.88 20.25 23.51
 1024 KB 156.01 149.13 24.37 26.25 23.41 26.67
 10240 KB 409.58 206.79 28.81 30.49 24.68 28.47
*.xls 100 KB 96.38 107.52 22.99 22.37 21.78 25.47
 1024 KB 234.36 259.62 24.08 27.21 23.46 29.20
 10240 KB 384.74 338.61 25.61 33.40 25.59 30.26
*.pptx 100 KB 111.67 95.38 25.04 21.73 25.88 23.38
 1024 KB 185.69 156.13 28.36 24.59 28.55 27.39
 10240 KB 278.82 209.68 30.46 28.76 31.51 30.61
*.txt 100 KB 94.74 88.50 22.57 21.35 25.46 23.23
 1024 KB 199.99 157.52 26.55 24.50 28.58 27.54

 10240 KB 325.68 234.29 31.80 30.16 30.72 31.59

Based on Table 3, Figure 3 presents the graphical visualization of encryption. Each graph uses a
logarithmic scale on the x-axis to represent predefined file sizes of 100 KB, 1024 KB, and 10240
KB. This allows more precise observation of efficiency trends as file size increases. The graphs
illustrate the efficiency differences between the two encryption algorithms across file types and
sizes. In general, larger file sizes lead to increased run time, CPU usage, and RAM usage, with
algorithm efficiency varying depending on the file types. Across most formats and sizes, AES
shows lower run time (higher throughput), while Camellia tends to maintain more stable memory
behavior. Importantly, the magnitude of the gap is not uniform: differences become more
pronounced at larger sizes and vary by file structure, indicating that efficiency conclusions depend
on workload composition rather than file size alone. Similarly, the decryption metrics for Run Time,
CPU Usage, and RAM Consumption were recorded and averaged across the predefined size, as
shown in Table 4. Refer to Table 4, Figure 4 illustrates the decryption efficiency of Camellia and
AES. Quite similar to the encryption process, larger file sizes generally result in increased run

JISKA (Jurnal Informatika Sunan Kalijaga)
ISSN:2527–5836 (print) | 2528–0074 (online) ■ 104

This article is distributed following Atribution-NonCommersial CC BY-NC as stated on
https://creativecommons.org/licenses/by-nc/4.0/.

time, CPU usage, and RAM usage, with efficiency varying depending on both the encryption
algorithm and the file types.

Figure 3 Visualization of Encryption Metrics

Table 4 Summary of Decryption Process (Averaged)

Types Predefined Sizes File 1 File 2 File 3
Camellia AES Camellia AES Camellia AES

*.mp3 100 KB 282.39 78.89 24.82 23.50 29.72 21.49
 1024 KB 441.79 138.52 25.53 25.53 32.07 23.59
 10240 KB 630.44 268.60 27.50 27.51 33.57 24.48
*.jpg 100 KB 181.40 96.32 18.64 21.24 21.16 19.50
 1024 KB 240.79 154.13 21.17 23.44 24.41 23.44
 10240 KB 320.44 275.45 23.58 24.60 25.57 26.66
*.png 100 KB 121.40 73.74 28.31 21.22 23.16 23.58
 1024 KB 300.79 144.99 32.17 24.57 26.07 25.64
 10240 KB 530.44 208.12 34.59 26.29 26.90 26.64
*.pdf 100 KB 181.40 107.08 33.98 25.71 32.49 29.79
 1024 KB 340.79 325.69 35.17 29.50 35.74 32.22
 10240 KB 510.44 504.91 39.59 34.29 37.90 33.23
*.docx 100 KB 121.40 121.40 22.64 21.95 21.16 22.78
 1024 KB 260.79 219.12 24.17 25.55 23.74 24.73
 10240 KB 390.44 442.44 29.59 28.48 24.57 25.56
*.xls 100 KB 121.40 131.40 28.31 24.31 23.49 23.15
 1024 KB 230.79 277.45 30.50 28.84 24.74 24.07
 10240 KB 410.44 440.11 34.59 31.25 26.57 25.57
*.pptx 100 KB 131.40 131.40 24.98 24.31 26.16 23.49
 1024 KB 200.79 277.45 28.50 25.50 28.74 25.74
 10240 KB 330.44 440.11 30.59 29.59 31.56 27.90
*.txt 100 KB 121.40 131.40 24.64 28.64 23.16 28.49
 1024 KB 220.79 210.78 27.50 30.50 27.74 30.56

 10240 KB 410.44 330.44 31.92 32.59 30.57 32.74

Evaluating both encryption and decryption processes highlights consistent performance
differences between Camellia and AES across various file types and predefined sizes (100 KB,
1024 KB, and 10240 KB). In the encryption phase, AES consistently achieved faster run times.
For example, encrypting a 10 MB *.mp3 file took 217.75 seconds with AES, compared to 646.16

 JISKA (Jurnal Informatika Sunan Kalijaga)
105 ■ Vol. 11, No. 1, JANUARY, 2026: 98 – 113

This article is distributed following Atribution-NonCommersial CC BY-NC as stated on
https://creativecommons.org/licenses/by-nc/4.0/.

seconds with Camellia—nearly three times longer. Similar trends appeared in *.pdf files, where
AES processed the largest size in 340.52 seconds, while Camellia required 392.14 seconds.
However, this higher speed was often accompanied by increased memory usage. Encrypting a
10 MB *.pdf file consumed 35.03 MB of RAM with AES, while Camellia used only 27.99 MB.
Similar patterns were found in other formats, such as *.xls and *.jpg, where AES consistently
required more memory during encryption. Camellia generally showed higher processor load for
CPU utilization during encryption, especially with larger files. For instance, processing a 10 MB
*.png file required 24.32% CPU with Camellia and 29.04% with AES. This pattern, however,
varied depending on the file format. With *.docx files, AES demonstrated slightly better CPU
efficiency at 30.49%, compared to Camellia’s 28.81%. In the decryption phase, AES continued to
show faster processing times. Decrypting a 10 MB *.png file took 208.12 seconds with AES, while
Camellia required 530.44 seconds. In terms of RAM usage, Camellia was generally more efficient.
For example, decrypting a 10 MB *.xls file used 25.57 MB of memory with AES and 26.57 MB
with Camellia—a relatively small difference. On the other hand, AES consumed less memory than
Camellia when decrypting *.pdf files of the same size, recording 33.23 MB versus 37.90 MB.
These differences suggest that file size and type influence memory usage and how each algorithm
handles data internally.

Figure 4 Visualization of Decryption Metrics

During the attack simulation phase, the outcomes varied depending on the file type, encryption
algorithm, and specific method. Table 5 presents the results of the Dictionary Attack Test for both
Camellia and AES. Each entry includes the Attack Time (AT) in seconds and the Attack Outcome
(AO), where ‘R’ indicates the attack was resisted and ‘B’ signifies a successful breach. Shows
that Camellia consistently resisted all dictionary attack attempts across various file types and
sizes, with no violations observed in any scenario. In contrast, AES demonstrated vulnerabilities
in specific formats, particularly in *.pdf and *.docx files at 100 KB and 1024 KB. Attack times (AT)
in this table varied significantly depending on file size and type; for example, smaller files like
*.pptx at 100 KB showed the shortest durations, with Camellia completing attacks in 306–326
seconds and AES in 781–801 seconds. Conversely, larger files, such as *.pdf and *.png at 10240
KB, required over 30,000 seconds for AES, whereas Camellia consistently remained under that
threshold. These variations suggest that both file size and internal structure—such as
compressibility or embedded metadata—play a key role in determining the efficiency of dictionary-
based attacks. Figure 5 visualizes the average attack times from Table 5, offering a more precise
comparison between the two algorithms. Averaging was considered valid and representative
because the three attack time values for each test case were closely aligned. Moreover, the
outcomes across those files were consistent, with each case resulting in complete resistance (3R)
or complete breach (3B), indicating uniform behavior within each test condition. The 3B pattern,

JISKA (Jurnal Informatika Sunan Kalijaga)
ISSN:2527–5836 (print) | 2528–0074 (online) ■ 106

This article is distributed following Atribution-NonCommersial CC BY-NC as stated on
https://creativecommons.org/licenses/by-nc/4.0/.

as indicated by the ‘0R 3B’ (zero file resisted and three files breached) outcomes, appeared
exclusively in AES for *.pdf and *.docx files at 100 KB and 1024 KB, highlighting an apparent
vulnerability when handling structured document formats. In contrast, Camellia maintained a
consistent 3R outcome across all file types and sizes, reinforcing its resistance to dictionary
attacks and efficiency across varying file characteristics.

Table 5 Dictionary Attack Results on Camellia and AES

Types Predefined
Sizes

File 1 File 2 File 3
Camellia AES Camellia AES Camellia AES
AT
(s) AO AT

(s) AO AT
(s) AO AT

(s) AO AT
(s) AO AT

(s) AO
*.mp3 100 KB 2657 R 1587 R 2677 R 1617 R 2637 R 1577 R

1024 KB 32751 R 10002 R 2765 R 10042 R 2735 R 9972 R
10240 KB 14808 R 32801 R 14828 R 33051 R 14798 R 33051 R

*.jpg 100 KB 726 R 426 R 736 R 436 R 726 R 416 R
1024 KB 1739 R 9957 R 1759 R 9917 R 1719 R 10117 R

10240 KB 21019 R 11624 R 21039 R 11724 R 20999 R 11574 R
*.png 100 KB 3648 R 15301 R 3668 R 15341 R 3628 R 15281 R

1024 KB 23552 R 17269 R 23582 R 17319 R 23532 R 17219 R
10240 KB 29844 R 26569 R 29794 R 26656 R 29914 R 26556 R

*.pdf 100 KB 3160 R 8934 B 3180 R 8954 B 3140 R 8914 B
1024 KB 3616 R 27722 B 3636 R 27692 B 3596 R 27772 B

10240 KB 25445 R 30757 R 25475 R 30787 R 25425 R 30767 R
*.docx 100 KB 639 R 7200 B 659 R 7230 B 619 R 7180 B

1024 KB 13063 R 26408 B 13083 R 26438 B 13043 R 26378 B
10240 KB 27309 R 52224 R 27329 R 52194 R 27289 R 52294 R

*.xls 100 KB 4900 R 8757 R 4920 R 8787 R 4880 R 8727 R
1024 KB 22510 R 10099 R 22540 R 10069 R 22470 R 10139 R

10240 KB 24259 R 11160 R 24229 R 11190 R 24309 R 11130 R
*.pptx 100 KB 306 R 791 R 326 R 801 R 306 R 781 R

1024 KB 9553 R 11150 R 9573 R 11180 R 9533 R 11130 R
10240 KB 27111 R 16929 R 27131 R 16959 R 27091 R 16899 R

*.txt 100 KB 6858 R 10058 R 6878 R 10088 R 6838 R 10028 R
1024 KB 8185 R 10482 R 8195 R 10512 R 8165 R 10482 R

10240 KB 10426 R 16492 R 10446 R 16522 R 10406 R 16472 R

Figure 5 Visualization of Dictionary Attack

Table 6 indicates that Camellia consistently resisted all Birthday Attack attempts across every file
type and size, with no breaches observed. In contrast, AES was breached in several cases,
particularly in *.mp3, *.jpg, *.png, *.pdf, and *.docx at 100 KB and *.docx at 1024 KB. Attack times
varied depending on file type and size—smaller files like *.jpg and *.mp3 at 100 KB had shorter
durations (around 6100–11600 seconds in AES), while larger files such as *.docx and *.txt at

 JISKA (Jurnal Informatika Sunan Kalijaga)
107 ■ Vol. 11, No. 1, JANUARY, 2026: 98 – 113

This article is distributed following Atribution-NonCommersial CC BY-NC as stated on
https://creativecommons.org/licenses/by-nc/4.0/.

10240 KB required over 25,000 seconds in AES and over 24,000 seconds in Camellia. These
findings indicate that while Camellia maintained complete resistance, file characteristics and
algorithm behavior under collision-based attacks still influenced the computational effort involved.
Figure 6 further illustrates this comparison by visualizing the average attack times between AES
and Camellia, calculated from three predefined sizes of consistent test repetitions. The data
confirms that AES was breached (3B) on several smaller files—specifically *.mp3, *.pdf, *.docx,
and *.txt at 100 KB, as well as *.docx at 1024 KB—while Camellia maintained complete resistance
(3R) across all tested files. Interestingly, even when both algorithms resisted attacks, AES
consistently required longer durations, with the gap becoming most prominent at 10240 KB,
suggesting that Camellia offers consistent resistance and performs more efficiently across
increasing file sizes.

Table 6 Result of the Birthday Attack

Types Predefined
Sizes

File 1 File 2 File 3
Camellia AES Camellia AES Camellia AES
AT
(s) AO AT

(s) AO AT
(s) AO AT

(s) AO AT
(s) AO AT

(s) AO

*.mp3 100 KB 3616 R 11624 B 3711 R 11634 B 3602 R 11604 B
1024 KB 6858 R 15301 R 6768 R 15331 R 6804 R 15281 R

10240 KB 10426 R 17269 R 10403 R 17229 R 10503 R 17299 R
*.jpg 100 KB 4400 R 6132 B 4344 R 6102 B 4435 R 6162 B

1024 KB 8757 R 18370 R 8816 R 18340 R 8803 R 18400 R
10240 KB 21019 R 21307 R 20969 R 21337 R 20965 R 21277 R

*.png 100 KB 4900 R 8934 B 4890 R 8964 B 4993 R 8904 B
1024 KB 11150 R 13500 R 11060 R 13530 R 11075 R 13490 R

10240 KB 21247 R 13699 R 21206 R 13729 R 21208 R 13669 R
*.pdf 100 KB 5733 R 11150 B 5772 R 11180 B 5721 R 11120 B

1024 KB 6858 R 12342 R 6792 R 12372 R 6926 R 12312 R
10240 KB 8934 R 17272 R 9018 R 17302 R 8927 R 17242 R

*.docx 100 KB 13063 R 10058 B 13044 R 10088 B 13069 R 10028 B
1024 KB 16492 R 21247 B 16449 R 21277 B 16475 R 21217 B

10240 KB 17269 R 25608 R 17309 R 25638 R 17280 R 25578 R
*.xls 100 KB 10002 R 4486 R 10076 R 4516 R 9930 R 4456 R

1024 KB 10099 R 21019 R 10172 R 21049 R 10027 R 20989 R
10240 KB 15301 R 23552 R 15347 R 23582 R 15209 R 23522 R

*.pptx 100 KB 8185 R 3616 R 8283 R 3586 R 8096 R 3646 R
1024 KB 10077 R 4400 R 10098 R 4430 R 10055 R 4370 R

10240 KB 11624 R 21622 R 11655 R 21652 R 11697 R 21592 R
*.txt 100 KB 4486 R 4900 R 4414 R 4930 R 4386 R 4870 R

1024 KB 9553 R 13063 R 9457 R 13093 R 9590 R 13033 R
10240 KB 24259 R 22510 R 24292 R 22540 R 24208 R 22480 R

Figure 6 Visualization of Birthday Attack

JISKA (Jurnal Informatika Sunan Kalijaga)
ISSN:2527–5836 (print) | 2528–0074 (online) ■ 108

This article is distributed following Atribution-NonCommersial CC BY-NC as stated on
https://creativecommons.org/licenses/by-nc/4.0/.

Table 7 reveals a clear performance contrast between the two algorithms, particularly at the 100
KB level. AES consistently required longer attack durations than Camellia, especially for files like
*.docx, *.jpg, and *.xls, which surpassed 18,000 seconds. Camellia maintained lower attack times
and more consistent results across all file types and sizes. Both algorithms exhibited longer
durations as file sizes increased to 10240 KB, though AES remained slower overall. These
patterns suggest that Camellia handled brute-force attempts more efficiently, while certain 100
KB files appeared more susceptible, especially under AES.

Table 7 Brute-Force Attack Test Results

Types Predefined
Sizes

File 1 File 2 File 3
Camellia AES Camellia AES Camellia AES
AT
(s) AO AT

(s) AO AT
(s) AO AT

(s) AO AT
(s) AO AT

(s) AO
*.mp3 100 KB 3943 R 8340 B 3900 R 8344 B 3843 R 8331 B

1024 KB 11580 R 15720 R 11573 R 15604 R 11653 R 15663 R
10240 KB 12960 R 16380 R 12983 R 16272 R 12892 R 16364 R

*.jpg 100 KB 6960 R 10260 B 6910 R 10373 B 6947 R 10111 B
1024 KB 18360 R 14160 B 18302 R 14038 B 18361 R 14307 B

10240 KB 19980 R 14760 R 19922 R 14746 R 20045 R 14858 R
*.png 100 KB 4860 R 5520 B 4886 R 5416 B 4805 R 5518 B

1024 KB 9720 R 7440 R 9698 R 7538 R 9743 R 7350 R
10240 KB 12060 R 17580 R 12057 R 17508 R 12099 R 17596 R

*.pdf 100 KB 7260 R 8220 B 7231 R 8188 B 7288 R 8303 B
1024 KB 13380 R 11520 R 13356 R 11468 R 13346 R 11554 R

10240 KB 13620 R 19680 R 13611 R 19670 R 13631 R 19812 R
*.docx 100 KB 5340 R 18240 B 5305 R 18210 B 5300 R 18296 B

1024 KB 5460 R 20880 R 5471 R 20902 R 5479 R 20902 R
10240 KB 10680 R 21022 R 10739 R 21600 R 10713 R 21517 R

*.xls 100 KB 4260 R 8760 B 4300 R 8727 B 4233 R 8718 B
1024 KB 10320 R 21000 R 10226 R 21010 R 10299 R 21012 R

10240 KB 15000 R 21420 R 15005 R 21336 R 15039 R 21437 R
*.pptx 100 KB 6120 R 4740 B 6031 R 4590 B 6101 R 4844 B

1024 KB 7080 R 6000 R 7045 R 6105 R 7063 R 6024 R
10240 KB 20520 R 18780 R 20462 R 18788 R 20478 R 18697 R

*.txt 100 KB 3660 B 4080 B 3661 B 4193 B 3595 B 4170 B
1024 KB 8460 R 8040 R 8458 R 7911 R 8507 R 7945 R

10240 KB 17760 R 14640 R 17782 R 14564 R 17712 R 14782 R

Figure 7 Visualization of Brute-Force Attack

Figure 7 presents the average brute-force attack times for AES and Camellia across various file
types and sizes, based on consistent results from three predefined files per type and size in Table
7. At 100 KB, AES was breached in all file types (0R 3B), including .jpg, while Camellia showed

 JISKA (Jurnal Informatika Sunan Kalijaga)
109 ■ Vol. 11, No. 1, JANUARY, 2026: 98 – 113

This article is distributed following Atribution-NonCommersial CC BY-NC as stated on
https://creativecommons.org/licenses/by-nc/4.0/.

stronger resistance with 3R 0B—except for the .txt file, which recorded 0R 3B. Both algorithms
fully resisted all attacks (3R 0B across the board) for larger sizes, with attack times increasing
along with file size. These results suggest higher resilience at larger sizes and highlight a specific
vulnerability in Camellia for small .txt files.

Importantly, none of these outcomes resulted from timeouts or execution limits. The breaches
occurred due to actual key discovery during simulation, not from premature halting or insufficient
time allocation, which confirms that algorithmic resilience—not processing duration—was the
determining factor. Table 8 presents the total number of Resisted (R) and Breached (B) cases for
each algorithm across all file types and attack types, summarizing the outcomes from all attack
simulations. The attack simulation phase highlights distinct contrasts in the security performance
of Camellia and AES across three common cryptographic threats. In the Dictionary Attack,
Camellia consistently resisted all attempts across all file types and sizes. In contrast, AES was
breached in specific cases—particularly for *.pdf and *.docx files at 100 KB and 1024 KB—
suggesting that the key derivation or encryption patterns in AES may have been more susceptible
to wordlist-based guessing in smaller or structured documents. In the Birthday Attack, which
targets hash collisions and probabilistic vulnerabilities, AES again exhibited more weaknesses
than Camellia. Successful breaches were recorded in AES for file types like *.mp3, *.jpg, *.png,
*.pdf, and *.docx, mainly at smaller sizes. Meanwhile, Camellia resisted every test, indicating
stronger protection against entropy-based collision exploitation. The Brute-Force Attack produced
different observations. AES failed in all 100 KB file types tested, showing total vulnerability at
smaller sizes. While more resistant overall, Camellia experienced a breach only in the 100 KB
*.txt file. This suggests that straightforward file structures may reduce the number of key
permutations needed to match the plaintext, making brute-force attempts more effective. These
outcomes should be interpreted as empirical behavior under the defined attack configuration. The
observed breaches highlight that robustness can differ across file structures at smaller sizes,
reinforcing that algorithm choice should be aligned with the expected data profile and the system’s
threat assumptions, not solely with raw encryption speed.

Table 8 Summary of Attack Outcomes

Types Predefined Sizes
Dictionary Attack Birthday Attack Brute-Force Attack Total Camellia AES Camellia AES Camellia AES
B R B R B R B R B R B R B R

*.mp3 100 KB 0 3 0 3 0 3 3 0 0 3 3 0 6 12
1024 KB 0 3 0 3 0 3 0 3 0 3 0 3 0 18

10240 KB 0 3 0 3 0 3 0 3 0 3 0 3 0 18
*.jpg 100 KB 0 3 0 3 0 3 3 0 0 3 3 0 6 12

1024 KB 0 3 0 3 0 3 0 3 0 3 0 3 0 18
10240 KB 0 3 0 3 0 3 0 3 0 3 0 3 0 18

*.png 100 KB 0 3 0 3 0 3 3 0 0 3 3 0 6 12
1024 KB 0 3 0 3 0 3 0 3 0 3 0 3 0 18

10240 KB 0 3 0 3 0 3 0 3 0 3 0 3 0 18
*.pdf 100 KB 0 3 3 0 0 3 3 0 0 3 3 0 9 9

1024 KB 0 3 0 3 0 3 0 3 0 3 0 3 0 18
10240 KB 0 3 0 3 0 3 0 3 0 3 0 3 0 18

*.docx 100 KB 0 3 3 0 0 3 3 0 0 3 3 0 9 9
1024 KB 0 3 3 0 0 3 3 0 0 3 0 3 6 12

10240 KB 0 3 0 3 0 3 0 3 0 3 0 3 0 18
*.xls 100 KB 0 3 0 3 0 3 0 3 0 3 3 0 3 15

1024 KB 0 3 0 3 0 3 0 3 0 3 0 3 0 18
10240 KB 0 3 0 3 0 3 0 3 0 3 0 3 0 18

*.pptx 100 KB 0 3 0 3 0 3 0 3 0 3 3 0 3 15
1024 KB 0 3 0 3 0 3 0 3 0 3 0 3 0 18

10240 KB 0 3 0 3 0 3 0 3 0 3 0 3 0 18
*.txt 100 KB 0 3 0 3 0 3 0 3 3 0 3 0 6 12

1024 KB 0 3 0 3 0 3 0 3 0 3 0 3 0 18
10240 KB 0 3 0 3 0 3 0 3 0 3 0 3 0 18

Total 0 72 9 63 0 72 18 54 3 69 24 48 54 378

The performance comparison between Camellia and AES reveals distinct characteristics in terms
of both computational efficiency and cryptographic robustness. From the encryption and

JISKA (Jurnal Informatika Sunan Kalijaga)
ISSN:2527–5836 (print) | 2528–0074 (online) ■ 110

This article is distributed following Atribution-NonCommersial CC BY-NC as stated on
https://creativecommons.org/licenses/by-nc/4.0/.

decryption phases, AES consistently demonstrated superior speed, completing tasks in
significantly shorter run times than Camellia across all file types and sizes. This advantage is
especially apparent in larger files, where AES achieved nearly threefold faster processing, making
it more suitable for time-sensitive applications. However, this speed benefit comes at the cost of
higher memory usage. AES generally consumes more RAM during encryption, particularly for
complex file types such as *.pdf and *.xls. In contrast, Camellia maintained more stable and lower
RAM consumption, suggesting its advantage in memory-constrained environments. CPU
utilization, on the other hand, varied depending on file type. However, Camellia often exhibited
slightly higher processor loads during encryption, while AES showed more efficient CPU use in
specific formats like *.docx. Regarding robustness, the attack simulation phase highlighted AES’s
relative weaknesses compared to Camellia. Camellia resisted all attacks in the Dictionary and
Birthday categories and was only breached in one case during Brute-Force testing (the 100 KB
*.txt file). AES, meanwhile, recorded multiple breaches, particularly in smaller file sizes. Notably,
AES failed to withstand Dictionary and Birthday Attacks in formats like *.pdf and *.docx at 100 KB
and 1024 KB, and was breached across all file types in the Brute-Force Attack at the smallest
size. Despite its speed, these findings suggest that AES may exhibit reduced resistance against
specific cryptanalytic techniques in small or structured file types. Conversely, Camellia provides
more consistent security, particularly at smaller sizes, although it is marginally slower.

The variations observed across run time, CPU usage, and memory consumption confirm that the
performance characteristics of both algorithms are highly dependent on file type and workload
scale. As file size increases, the differences between AES and Camellia become more
pronounced, offering valuable insight into their suitability for various system requirements and
processing environments. The attack simulations highlight significant disparities in how each
algorithm responds to cryptographic threats. Resistance levels varied across Dictionary, Birthday,
and Brute-Force attack scenarios based on file structure and size. While AES exhibited multiple
breaches—especially on smaller and structured files—Camellia consistently demonstrated
stronger resilience in most cases, indicating more robust default protection in diverse conditions.
Camellia and AES are evaluated based on the combined performance efficiency and
cryptographic robustness assessment. Rather than favoring one algorithm absolutely, the findings
underscore the importance of aligning algorithm selection with system priorities. One algorithm
may offer operational advantages for applications requiring rapid data handling, while for
scenarios prioritizing security under sustained attack, another may provide more consistent
resilience. The results highlight that performance and security trade-offs are not uniform across
file types or sizes, emphasizing the need for contextual decision-making in cryptographic
implementations. Additionally, isolated vulnerabilities in specific structured files suggest that
further refinement or hybrid encryption strategies may be required in practice.

Practical implications and system design recommendations. The findings suggest several
actionable guidelines for system architects: for throughput-prioritized workflows dominated by
large files and time-sensitive processing, AES is a practical choice due to consistently lower run
time; for memory-constrained environments where RAM budgets are tight or multi-process
encryption is expected, Camellia may be preferable because it shows more stable memory
behavior across workloads; for mixed-format repositories handling heterogeneous document
formats (e.g., office and PDF files), selection should consider not only speed but also empirical
robustness under the assumed attack model, particularly for smaller structured files; for security-
first deployments where the threat model includes sustained password-guessing attempts,
system designers should prioritize secure configurations and operational controls (strong
credential policies, rate limiting, and key management hardening) and consider Camellia when
results indicate more consistent resistance; and rather than enforcing a single algorithm globally,
a policy-based selection approach can be implemented to choose encryption based on file
size/type and system constraints (time budget versus memory budget versus threat level).

4. CONCLUSIONS

This study presented a comparative performance analysis of Camellia and AES across various
file types and sizes. AES consistently achieved faster encryption and decryption times, especially

 JISKA (Jurnal Informatika Sunan Kalijaga)
111 ■ Vol. 11, No. 1, JANUARY, 2026: 98 – 113

This article is distributed following Atribution-NonCommersial CC BY-NC as stated on
https://creativecommons.org/licenses/by-nc/4.0/.

on large files, making it suitable for time-sensitive applications. However, it consumed more
memory and was more vulnerable to cryptanalytic attacks. Camellia exhibited more stable
resource usage and greater resistance to attacks, experiencing only one breach during brute-
force testing on a small plaintext file. At the same time, AES recorded multiple breaches in both
dictionary and birthday attacks. Therefore, algorithm selection should be based on system
constraints and required security levels. AES is recommended for high-speed environments,
while Camellia is more appropriate for systems prioritizing security and resource efficiency.
Overall, this study emphasizes that performance and robustness trade-offs are workload-
dependent and can vary by file structure and size under practical attack conditions. By providing
a controlled multi-format dataset and a unified evaluation of efficiency and empirical robustness,
this paper supports more defensible, context-aware encryption decisions in real-world system
design. Future research may include testing additional algorithms, expanding file variations, and
evaluating performance under real-time operational conditions.

REFERENCES

A, H. M., S, F. M., & G, E. J. (2022). Implementation of Password Hashing on Embedded Systems
with Cryptographic Acceleration Unit. International Journal of Advanced Computer Science
and Applications, 13(2), 171–175. https://doi.org/10.14569/IJACSA.2022.0130221

Adams, C. (2021). Dictionary Attack. In Encyclopedia of Cryptography, Security and Privacy (pp.
1–2). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-27739-9_74-2

Alkhwaja, I., Albugami, M., Alkhwaja, A., Alghamdi, M., Abahussain, H., Alfawaz, F., Almurayh,
A., & Min-Allah, N. (2023). Password Cracking with Brute Force Algorithm and Dictionary
Attack Using Parallel Programming. Applied Sciences, 13(10), 5979.
https://doi.org/10.3390/app13105979

Andriyanto, M. R., & Sukmasetya, P. (2022). Penerapan Algoritma Advanced Encryption
Standard (AES) untuk Keamanan Data Transaksi pada Sistem E-Marketplace. Journal of
Computer System and Informatics (JoSYC), 4(1), 179–187.
https://doi.org/10.47065/josyc.v4i1.2451

Arabul, E., Oliveira, R. D., Emami, A., Typos, S., Vrontos, C., Wang, R., Nejabati, R., &
Simeonidou, D. (2023). 100 Gbps Quantum-Secured and O-RAN-Enabled Programmable
Optical Transport Network for 5G Fronthaul. Journal of Optical Communications and
Networking, 15(8), C223–C231. https://doi.org/10.1364/JOCN.483644

Azhari, M., Mulyana, D. I., Perwitosari, F. J., & Ali, F. (2022). Implementasi Pengamanan Data
pada Dokumen Menggunakan Algoritma Kriptografi Advanced Encryption Standard (AES).
Jurnal Pendidikan Sains dan Komputer, 2(01), 163–171.
https://doi.org/10.47709/jpsk.v2i01.1390

Bibiola, F., Kalsum, T. U., & Alamsyah, H. (2023). Penerapan Algoritma Advance Encryption
Standard (AES) untuk Pengamanan File pada Aplikasi Berbasis WEB. Jurnal Surya Energy,
8(1), 35. https://doi.org/10.32502/jse.v8i1.6461

Chavan, R., Gulge, A., & Bhandare, S. (2024). Moving Object Detection and Classification Using
Deep Learning Techniques. Tuijin Jishu/Journal of Propulsion Technology, 45(1), 1001–
4055. https://www.propulsiontechjournal.com/index.php/journal/article/view/5000

Dwina, N., Khairani, N., Nasir, M., & Indrawati, I. (2023). Penerapan Metode Advanced Encryption
Standard pada Sistem Penyimpanan Data Menggunakan Cloud Computing Sebagai
Software-as-a-Service. Journal of Artificial Intelligence and Software Engineering (J-AISE),
3(1), 25–29. https://doi.org/10.30811/jaise.v3i1.4183

Fahdi, H. Al, & Ahmed, M. (2020). Cryptographic Attacks, Impacts and Countermeasures. In
Security Analytics for the Internet of Everything (pp. 215–230). CRC Press.
https://doi.org/10.1201/9781003010463-13

G, E. J., A, H. M., & S, F. H. M. (2022). Enhanced Security: Implementation of Hybrid Image
Steganography Technique Using Low-Contrast LSB and AES-CBC Cryptography.
International Journal of Advanced Computer Science and Applications, 13(8), 899–905.
https://doi.org/10.14569/IJACSA.2022.01308104

Hamza, A. A., & Al-Janabi, R. J. surayh. (2024). Detecting Brute Force Attacks Using Machine
Learning. BIO Web of Conferences, 97, Article ID: 00045.
https://doi.org/10.1051/bioconf/20249700045

JISKA (Jurnal Informatika Sunan Kalijaga)
ISSN:2527–5836 (print) | 2528–0074 (online) ■ 112

This article is distributed following Atribution-NonCommersial CC BY-NC as stated on
https://creativecommons.org/licenses/by-nc/4.0/.

Haris, M., Lydia, M. S., & Sutarman, S. (2023). Pengamanan pada Citra Digital dengan
Menggunakan Modifikasi Blok Data Algoritma AES - Rijndael. Jurnal Media Informatika
Budidarma, 7(1), 444–453. https://doi.org/10.30865/mib.v7i1.5458

Hidayati, L. N., Fitriana, G. F., & Adam, I. F. (2021). Perbandingan Keacakan Citra Enkripsi
Algoritma AES dan Camelia Uji NPCR dan UACI. JURIKOM (Jurnal Riset Komputer), 8(6),
274–283. https://doi.org/10.30865/jurikom.v8i6.3624

Housley, R., & Schaad, J. (2020). RFC 3394 - Advanced Encryption Standard (AES) Key Wrap
Algorithm. IETF Datatracker. https://datatracker.ietf.org/doc/rfc3394/

Hranický, R., Šírová, L., & Rucký, V. (2025). Beyond the Dictionary Attack: Enhancing Password
Cracking Efficiency Through Machine Learning-Induced Mangling Rules. Forensic Science
International: Digital Investigation, 52, Article ID: 301865.
https://doi.org/10.1016/j.fsidi.2025.301865

Kato, A., & Moriai, S. (2013). RFC 3657 - Use of the Camellia Encryption Algorithm in
Cryptographic Message Syntax (CMS). IETF Datatracker.
https://datatracker.ietf.org/doc/rfc3657/

Li, Y., Wang, Q., Huang, D., Liu, J., & Xie, H. (2024). Quantum Chosen-Cipher Attack on Camellia.
Cryptology EPrint Archive, Paper 2024/1804. https://eprint.iacr.org/2024/1804

Manullang, S. (2023). Implementasi Kriptografi Pengamanan Data File Dokumen Menggunakan
Algoritma Advanced Encryption Standard Mode Chiper Block Chaining. Jurnal Nasional
Teknologi Komputer, 3(2), 87–95. https://doi.org/10.61306/jnastek.v3i2.69

Matsui, M., Moriai, S., & Nakajima, J. (2015). RFC 3713 - A Description of the Camellia Encryption
Algorithm. IETF Datatracker. https://datatracker.ietf.org/doc/rfc3713/

Mohammed, A. A., Rahma, A. M. S., & Abdul Wahab, H. B. (2025). Security Encryption Model of
E-Bank Based Camellia Algorithm Using Cubic Curve. AIP Conference Proceedings,
3264(1), Article ID: 030030. https://doi.org/10.1063/5.0263610

Muthavhine, K. D., & Sumbwanyambe, M. (2023). Blocking Linear Cryptanalysis Attacks Found
on Cryptographic Algorithms Used on Internet of Thing Based on the Novel Approaches of
Using Galois Field (GF (232)) and High Irreducible Polynomials. Applied Sciences, 13(23),
Article ID: 12834. https://doi.org/10.3390/app132312834

Ning, L., Ali, Y., Ke, H., Nazir, S., & Huanli, Z. (2020). A Hybrid MCDM Approach of Selecting
Lightweight Cryptographic Cipher Based on ISO and NIST Lightweight Cryptography
Security Requirements for Internet of Health Things. IEEE Access, 8, 220165–220187.
https://doi.org/10.1109/ACCESS.2020.3041327

Nithishma, A., Vijayan, A., Nanda, D., Kumar, Ch. A., Thaseen, S., & Ahmad, A. (2022). Remote
User Authentication Using Camellia Encryption for Network-Based Applications. In Security
and Privacy-Preserving Techniques in Wireless Robotics (pp. 255–279). CRC Press.
https://doi.org/10.1201/9781003156406-19

Panahi, U., & Bayılmış, C. (2023). Enabling Secure Data Transmission for Wireless Sensor
Networks Based IoT Applications. Ain Shams Engineering Journal, 14(2), Article ID:
101866. https://doi.org/10.1016/j.asej.2022.101866

Patra, R., & Patra, S. (2021). Cryptography: A Quantitative Analysis of the Effectiveness of
Various Password Storage Techniques. Journal of Student Research, 10(3).
https://doi.org/10.47611/jsrhs.v10i3.1764

Rachmayanti, A., & Wirawan, W. (2022). Implementasi Algoritma Advanced Encryption Standard
(AES) pada Jaringan Internet of Things (IoT) untuk Mendukung Smart Healthcare. Jurnal
Teknik ITS, 11(3). https://doi.org/10.12962/j23373539.v11i3.97042

Rasheed, A., Baza, M., Badr, Mahmoud. M., Alshahrani, H., & Choo, K.-K. R. (2024). Efficient
Crypto Engine for Authenticated Encryption, Data Traceability, and Replay Attack Detection
Over CAN Bus Network. IEEE Transactions on Network Science and Engineering, 11(1),
1008–1025. https://doi.org/10.1109/TNSE.2023.3312545

Rasheed, A., Baza, M., Khan, M., Karpoor, N., Varol, C., & Srivastava, G. (2023). Using
Authenticated Encryption for Securing Controller Area Networks in Autonomous Mobile
Platforms. 2023 26th International Symposium on Wireless Personal Multimedia
Communications (WPMC), 76–82. https://doi.org/10.1109/WPMC59531.2023.10338834

 JISKA (Jurnal Informatika Sunan Kalijaga)
113 ■ Vol. 11, No. 1, JANUARY, 2026: 98 – 113

This article is distributed following Atribution-NonCommersial CC BY-NC as stated on
https://creativecommons.org/licenses/by-nc/4.0/.

Rashidi, B. (2021). Flexible and High-Throughput Structures of Camellia Block Cipher for Security
of the Internet of Things. IET Computers & Digital Techniques, 15(3), 171–184.
https://doi.org/10.1049/cdt2.12025

Sarmila, K. B., & Manisekaran, S. V. (2022). Honey Encryption and AES based Data Protection
Against Brute Force Attack. 2022 Sixth International Conference on I-SMAC (IoT in Social,
Mobile, Analytics and Cloud) (I-SMAC), 187–190. https://doi.org/10.1109/I-
SMAC55078.2022.9987304

Sulaiman, A. S., & Hammood, M. M. (2025). Enhancing Data Security by Using Hybrid Encryption
Technique Based on AES and Camellia. In Learning and Analytics in Intelligent Systems
(Vol. 45, pp. 173–182). https://doi.org/10.1007/978-3-031-82706-8_18

Tanjung, P. Y. (2022). Penerapan Algoritma AES 625 dalam Pengamanan Data Rekam Medis.
Journal Global Technology Computer, 1(3), 77–83. https://doi.org/10.47065/jogtc.v1i3.2054

Verma, R., Dhanda, N., & Nagar, V. (2022). Enhancing Security with In-Depth Analysis of Brute-
Force Attack on Secure Hashing Algorithms. In Lecture Notes in Networks and Systems
(Vol. 376, pp. 513–522). https://doi.org/10.1007/978-981-16-8826-3_44

Wei, Z., Sun, S., Hu, L., Wei, M., & Peralta, R. (2023). Searching the Space of Tower Field
Implementations of the 𝔽28 Inverter - with Applications to AES, Camellia and SM4.
International Journal of Information and Computer Security, 20(1–2), 1–26.
https://doi.org/10.1504/IJICS.2023.127999

ZhenQiang, L., Fei, G., SuJuan, Q., & QiaoYan, W. (2023). Quantum Circuit for Implementing
Camellia S-Box with Low Costs. SCIENTIA SINICA Physica, Mechanica & Astronomica,
53(4), Article ID: 240313. https://doi.org/10.1360/SSPMA-2022-0485

