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Abstract 
The automated categorization of brain cancers from MRI is essential for improving diagnostic 
precision. Traditional Convolutional Neural Networks (CNNs) are proficient in local feature 
extraction but are constrained in their ability to capture long-range spatial relationships, hence 
impairing performance on intricate malignancies. We propose a hybrid parallel architecture that 
merges a CNN with a Vision Transformer (ViT) to combine local and global feature modeling. We 
assessed our dual-branch model in comparison to a conventional CNN baseline using a curated 
dataset of 15,000 MRI images categorized into three classes: glioma, meningioma, and pituitary. 
The hybrid model exhibited enhanced performance, attaining 98.40% accuracy and 0.0783 loss, 
in contrast to the baseline's 97.40% accuracy and 0.1187 loss. The substantial decrease in 
misclassifications was validated by additional metrics, such as enhanced recall for the 
meningioma category. The integration of local and global variables produces a more precise, 
stable, and generalizable classification framework, demonstrating significant potential as a basis 
for dependable AI-driven Clinical Decision Support Systems (CDSS) in neuroradiology. 
 
Keywords: Artificial Intelligence, Convolutional Neural Network, Machine Learning, 
Medical Image Analysis, Vision Transformer 
 

Abstrak 
Kategorisasi otomatis kanker otak dari citra MRI sangat penting untuk meningkatkan ketepatan 
diagnosis. Jaringan Syaraf Konvolusional (CNN) tradisional memiliki kemampuan yang baik 
dalam mengekstraksi fitur lokal, tetapi terbatas dalam menangkap hubungan spasial jangka 
panjang, sehingga mengurangi kinerjanya pada kasus keganasan yang kompleks. Kami 
mengusulkan arsitektur hibrida paralel yang menggabungkan CNN dengan Vision Transformer 
(ViT) untuk memadukan pemodelan fitur lokal dan global. Model dua cabang ini dievaluasi dan 
dibandingkan dengan model CNN konvensional menggunakan dataset terkurasi yang berisi 
15.000 citra MRI yang diklasifikasikan ke dalam tiga kelas: glioma, meningioma, dan pituitary. 
Model hibrida menunjukkan peningkatan kinerja yang signifikan, mencapai akurasi 98,40% dan 
loss 0,0783, dibandingkan dengan model dasar (baseline) yang memiliki akurasi 97,40% dan loss 
0,1187. Penurunan besar dalam kesalahan klasifikasi ini divalidasi melalui metrik tambahan, 
termasuk peningkatan recall untuk kategori meningioma. Integrasi antara variabel lokal dan 
global menghasilkan kerangka klasifikasi yang lebih akurat, stabil, dan dapat digeneralisasi 
dengan baik, menunjukkan potensi besar sebagai dasar bagi Sistem Pendukung Keputusan 
Klinis (Clinical Decision Support Systems/CDSS) berbasis AI yang andal di bidang 
neuroradiologi.Abstrak dalam bahasa Indonesia ditulis dengan pola yang sama dengan abstrak 
dalam Bahasa Inggris hanya tidak perlu dimiringkan. 
 
Kata Kunci: Kecerdasan Buatan, Convolutional Neural Network, Pembelajaran Mesin, 
Analisis Citra Medis 

1. INTRODUCTION 

 
The classification of brain tumors using Magnetic Resonance Imaging (MRI) is a crucial process 
in the development of efficient diagnostic and treatment strategies in the field of neuroradiology 
(Aggarwal et al., 2023; Fujima et al., 2023a). MRI is the preferred method for visualizing brain 
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tissue due to its excellent soft tissue contrast, allowing for precise diagnosis of disease disorders 
(Senan et al., 2022). Manual interpretation of high-dimensional MRI scans is sometimes 
hampered by their labor-intensive nature and considerable inter-observer variability, leading to 
diagnostic ambiguity (Alanazi et al., 2022; Omer, 2024). Therefore, advances in automation 
techniques for image processing are becoming increasingly important to improve current clinical 
practice (Dai et al., 2025). 
 
The development of deep learning technology has triggered a paradigm shift in medical image 
analysis by presenting an innovative methodology for image classification (Balamurugan & 
Gnanamanoharan, 2023; Xie, 2023). Convolutional Neural Network (CNN) is a fundamental 
architecture in this field, highly adept at hierarchical feature extraction and capable of mimicking 
the diagnostic accuracy of humans (Jamali et al., 2024; Liu et al., 2024; Parulian, 2025). 
Nevertheless, CNN faces significant obstacles related to intrinsic local bias. This limits its ability 
to understand long-term spatial relationships, which is something important for distinguishing 
tumor subtypes that are visually similar but histologically different (Hasan et al., 2025; Touvron et 
al., 2022). 
 
To overcome these limitations, Vision Transformer (ViT) emerged as a new method that breaks 
down images into a series of patches and uses self-attention mechanisms to efficiently represent 
global spatial dependencies (Ruthven et al., 2023; Wibowo et al., 2025). ViT shows potential in 
better interpretability and prediction consistency between patches than classic CNN designs; 
nevertheless, ViT is characterized by enormous data needs and weaker local bias (Khatun et al., 
2025). 
 
Given the strengths and weaknesses of both architectures, CNN–ViT hybrid research has been 
on the rise. This hybrid model combines CNN's advantages in local feature extraction and ViT's 
capabilities in modeling global spatial relationships (Alayón et al., 2023; Emara et al., 2025; Zhang 
et al., 2023). This combination has been shown to improve classification accuracy compared to 
using CNN or ViT separately (Touvron et al., 2022). In the context of brain tumor classification, 
recent research shows that the CNN–ViT hybrid model provides more precise, more reliable, and 
more clinically interpretable predictions (Bukhari, 2024; Liu et al., 2023; Murugesan et al., 2025; 
Yu et al., 2024). However, there is still a significant research gap. Most hybrid studies today use 
sequential pipelines or partial integrations that have not fully leveraged the synergies between 
local CNN extraction and the global context of ViT. In addition, comparative evaluation of a robust 
CNN baseline with a uniform experimental setting is still very limited. 
 
Based on the above observations, this study does not aim to introduce a new CNN-ViT 
architecture. Instead, it focuses on a controlled comparative evaluation between conventional 
CNNs and parallel CNN-ViT hybrid models under identical experimental conditions. Although the 
dual-flow CNN-ViT architecture has been explored in previous studies, there is still limited 
empirical evidence regarding its actual performance gains when compared to robust CNN 
baselines using the same dataset, preprocessing pipeline, and training protocols. Therefore, this 
work emphasizes performance comparisons, resiliency analysis, and computational trade-offs 
rather than architectural novelty. 

2. METHODS 

2.1  Dataset Acquisition and Characterization 

This study uses the public brain MRI dataset from the Multi Cancer Dataset in the Kaggle 
repository (Naren, 2024). From this dataset, a subset of 15,000 T1-weighted axial images was 
selected with a balanced distribution among three categories of histologically confirmed tumors: 
glioma, meningioma, and pituitary tumors, each of 5,000 images. The selection of this subset is 
based on the need to ensure class balance, which is critical for the stability of the training and 
evaluation of multi-class classification models. 
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The dataset was then stratified into three parts: training (n = 9,600; 64%), validation (n = 2,400; 
16%), and testing (n = 3,000; 20%). These divisions do not overlap to guarantee that the model 
is tested on data that has not been seen at all, thus realistically measuring generalization 
capabilities. This sharing strategy also follows best practices in the evaluation of deep learning 
models on medical data to avoid overfitting bias. 
 
It is important to note that the Multi Cancer Dataset does not provide explicit patient-level 
identifiers. As a result, the dataset separation strategy is carried out at the image level using 
cascading random separation. As a result, the study could not fully guarantee that slices 
originating from the same patient did not appear in different subsets (training, validation, and 
testing). These limitations are inherent in the structure of the dataset and are recognized as a 
potential source of data leaks, which have also been reported in other studies using the same 
dataset. A visualization of the morphological characteristics of the three tumor types (glioma, 
meningioma, pituitary) is presented in Figure 1, which provides visual context and helps the 
reader understand the anatomical differences between the classes. 
 

 
Figure 1 Characteristics of brain tumors: (a) glioma; (b) meningioma; (c) pituitary tumor 

2.2 Image Data Pre-processing 

A systematic picture pre-processing pipeline was established to guarantee that all model inputs 
met adequate quality and uniformity standards, thus facilitating an efficient and effective training 
process (Goyal et al., 2025). Initially, all photos were subjected to pixel intensity equalization with 
the use of a rescaling factor of 1/255. This approach normalizes pixel values to a range of 0 to 1 
(Fujima et al., 2023b), hence improving data uniformity and diminishing model complexity (Goyal 
et al., 2025). This normalization is essential for expediting model convergence and averting high-
intensity pixel values from disrupting the learning process (Goyal et al., 2025). Normalization is 
formulated as Eq. (1). 
 

𝐼!"#$(𝑥, 𝑦) =
𝐼(𝑥, 𝑦)
255  (1) 

 
Additionally, all images were scaled to a consistent dimension of 224 × 224 pixels to conform to 
the input specifications of the CNN architectures, a common procedure in modern image 
processing applications (Goyal et al., 2025). The data was processed in groups of 32 pictures. In 
the multi-class classification challenge, labels were one-hot encoded utilizing the 'categorical' 
mode, a commonly employed method that guarantees a suitable numerical representation for the 
loss function (Goyal et al., 2025). The division of training and validation data was managed 
automatically by configuring a validation_split option, which designated 20% of the training data 
as the validation set. This method enhances data usage and enables more precise evaluation of 
models during training (Goyal et al., 2025). 
 
It is essential to emphasize that no data augmentation was implemented on the testing set; the 
photos underwent just normalization. This methodology guarantees that the ultimate model 
assessment is conducted on unblemished, undistorted data, yielding an accurate evaluation of its 
performance on novel instances (Goyal et al., 2025). To ensure evaluation consistency, data 
shuffling was deactivated during the test set processing. This process is crucial for preserving the 
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stability of evaluation metrics and guaranteeing reproducible, reliable outcomes (Ali et al., 2025; 
Goyal et al., 2025). 

2.3 Data Augmentation Strategy 

A systematic data augmentation method was exclusively applied to the training images to boost 
the models' generalization capabilities and extend the distributional representation of the training 
data (Krichen, 2023). The augmentation process comprised various geometric modifications: 
random rotations of up to 20 degrees, random horizontal and vertical shifts of up to 20% of the 
image dimensions, shear transformations, and random zooming (Keng & Merz, 2024; Krichen, 
2023). Furthermore, horizontal flipping was utilized to create variations in object orientation, a 
method recognized for enhancing model robustness against input variations (Dragan et al., 2023). 
The augmentations were executed in real-time during the training phase via the 
ImageDataGenerator class. This method eliminates the necessity for explicit storage of 
augmented images, therefore guaranteeing memory and computational efficiency within the data 
processing pipeline (Checcucci et al., 2023). 

2.4 Architectural Design 

This study encompassed the design, execution, and comparative assessment of two separate 
deep learning systems. The first model is a standard Convolutional Neural Network (CNN), 
functioning as the experimental baseline to set a performance benchmark. The second is our 
suggested parallel hybrid CNN–ViT architecture, designed to address the intrinsic constraints of 
the baseline model. 
 
Both architectures underwent comparable pre-processing pipelines, data partitioning systems, 
and training hyperparameters to guarantee a fair and rigorous comparison. This method isolates 
architectural design as the principal variable affecting performance outcomes. The 
comprehensive methodological architecture of this investigation, encompassing data collection to 
final model evaluation, is visually encapsulated in Figure 2. 
  

 
Figure 2 Research Methodology 

2.5 Baseline CNN Architecture 

The foundational Convolutional Neural Network (CNN) model was developed with the Keras 
Sequential API, a framework chosen for its efficacy and resilience in prototyping and constructing 
deep learning models (Pumperla & Cahall, 2022). The architecture, specified in Table 1, consists 
of two main components: a feature extraction backbone and a classification head. The feature 
extraction backbone is engineered to handle RGB picture inputs measuring 224 × 224 pixels and 
comprises five consecutive convolutional blocks. Each block consists of a Conv2D layer for 
feature extraction, succeeded by BatchNormalization to enhance learning stability and expedite 
convergence, and a MaxPooling2D layer for spatial down-sampling. The quantity of filters 
escalates systematically over these blocks (e.g., 32, 64, 128), facilitating the model's capacity for 
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hierarchical feature extraction, hence capturing patterns of escalating complexity from basic 
edges to elaborate textures. 
 
Subsequent to the convolutional backbone, the resultant feature maps are flattened into a vector 
and transmitted to the classification head. This skull consists of three fully connected (Dense) 
layers. A Dropout layer with a rate of 0.5 is employed as a regularization technique to mitigate 
overfitting. The architecture concludes with a Dense layer employing a Softmax activation 
function, producing a probability distribution among the three tumor types, which is calculated 
using the formula in Eq. (2). 
 

𝑃(𝑦 = 𝑖 ∣ 𝑥) =
𝑒%!

∑&'() 𝑒%"
 (2) 

Table 1 Architectural Specifications of the Baseline CNN Model. 

Layer Output Size Number of 
Filters/Unit 

Kernel 
Size Pooling 

Conv2D + Batch Normalization 224×224 32 3×3 – 
MaxPooling2D 112×112 – – 2×2 
Conv2D + Batch Normalization 112×112 64 3×3 – 
MaxPooling2D 56×56 – – 2×2 
Conv2D + Batch Normalization 56×56 128 3×3 – 
MaxPooling2D 28×28 – – 2×2 
Conv2D + Batch Normalization 28×28 256 3×3 – 
MaxPooling2D 14×14 – – 2×2 
Conv2D + Batch Normalization 14×14 512 3×3 – 
MaxPooling2D 7×7 – – 2×2 

2.6 Hybrid CNN–ViT Architecture 

The suggested hybrid model was developed utilizing the Keras Functional API, a framework that 
offers the necessary flexibility for designing intricate, non-linear network topologies, including a 
parallel dual-stream architecture (Ali et al., 2025). Figure 3 demonstrates that this architecture is 
engineered to concurrently process an input image via two separate yet parallel pathways: a 
CNN-based feature extractor for local patterns and a Vision Transformer (ViT) backbone for global 
context modeling. This synergistic methodology, demonstrated to be beneficial in medical image 
analysis (Emara et al., 2025; Yu et al., 2024), seeks to develop a more nuanced and 
comprehensive feature representation for the classification of brain tumors (Kim et al., 2025; 
Tummala et al., 2022). 
 
The initial stream, the CNN component, operates as a specialized local feature extractor. It utilizes 
the identical foundational architecture outlined in the preceding section, with five consecutive 
convolutional blocks (Conv2D, BatchNormalization, MaxPooling2D). This branch processes the 
224×224 RGB input image and is chiefly tasked with capturing intricate spatial hierarchies, 
including textures and morphological characteristics, essential for local tumor classification. The 
second stream operates concurrently, employing a pre-trained Vision Transformer model, namely 
the ViT-Base-Patch16-224 version from the Hugging Face library. This ViT backbone analyzes 
the identical normalized input by initially segmenting it into a sequence of 16×16 patches. The 
patches are subsequently linearly embedded and integrated using positional encodings (Wu et 
al., 2020) to preserve spatial information, as shown in Eq. (3). In this formulation, 𝐸 is an 
embedding matrix, 𝐸*"+ is positional encoding, and 𝑁 is the number of patches. The generated 
sequence of tokens is processed by the Transformer's self-attention layers using the relation 
described in Eq. (4), enabling the model to grasp long-range dependencies and overarching 
contextual linkages throughout the entire image (Deng et al., 2009). The model was initialized 
with weights pre-trained on the ImageNet dataset to utilize transferred information and enhance 
training stability. 
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𝑧, = [𝑥*)𝐸; 𝑥*-𝐸; . . . ; 𝑥*.𝐸] + 𝐸*"+ (3) 

 

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾, 𝑉) = softmax(
𝑄𝐾/

>𝑑0
)𝑉 (4) 

 
𝐹12+3"! = [𝐹&.. ∥ 𝐹43/] (5) 

 
The feature vectors obtained from the terminal layers of both the CNN and ViT branches are 
subsequently amalgamated. The fusion is accomplished by a Concatenation layer that integrates 
the local and global feature representations into a singular, cohesive vector, as expressed in Eq. 
(5). The concatenated vector is then processed by a classification head consisting of many Dense 
layers, which are regularized by L2 regularization and Dropout. The architecture concludes with 
a Dense layer utilizing a Softmax activation function to generate probability scores for the three 
tumor classifications: glioma, meningioma, and pituitary, in accordance with known 
methodologies (Touvron et al., 2022). 
 

 
Figure 3 Visualization of the CNN–ViT hybrid architecture 

Figure 3 is the architectural diagram of the proposed parallel dual-stream hybrid CNN-ViT model. 
The workflow commences with a 224×224 pixel MRI input, concurrently processed by two parallel 
streams. The CNN component focuses on extracting local spatial characteristics, whereas the 
ViT backbone encompasses global contextual links. The feature vectors generated by each 
stream are subsequently concatenated and forwarded via a classification head composed of 
dense layers. The final softmax output layer produces the categorization probabilities for the three 
tumor categories: glioma, meningioma, and pituitary. 

2.7 Vision Transformer Fine-Tuning Strategy 

In this study, the Vision Transformer backbone (ViT-Base-Patch16-224) was fully fine-tuned 
without freezing any of its layers. The model was initialized using ImageNet-21k pretrained 
weights and trained jointly with the CNN branch in an end-to-end manner. Feature extraction from 
the ViT branch was performed using the [CLS] token obtained from the last hidden state, which 
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represents the global image-level representation. The same learning rate was applied to both 
CNN and ViT components to maintain a unified optimization strategy. 

2.8 Training and Evaluation Protocol 

The evaluation process was created to objectively analyze and compare the efficacy of the two 
proposed architectures in classifying three types of brain cancers using MRI scans (Murugesan 
et al., 2025). The traditional CNN architecture functioned as the performance baseline for 
evaluating the effectiveness of the suggested hybrid CNN–ViT model (Ullah et al., 2023). A range 
of callback mechanisms was utilized to enhance the training process and mitigate overfitting. This 
incorporated EarlyStopping with a patience of five epochs, which automatically terminated training 
if the validation loss did not improve. The ModelCheckpoint callback was set up to preserve solely 
the model weights that achieved optimal performance on the validation set. Furthermore, 
ReduceLROnPlateau was employed to dynamically modify the learning rate, decreasing it when 
progress in learning plateaued. This amalgamation of callbacks is an established technique for 
augmenting training stability and promoting model generalization (Murugesan et al., 2025). Both 
models underwent training for a maximum of 50 epochs, with performance evaluated across the 
training, validation, and testing datasets (Ullah et al., 2023). 
 
A confusion matrix (Eq. (10)) was produced for a detailed performance evaluation on the hold-out 
test set. Key classification metrics, specifically precision (Eq. (6)), recall (Eq. (7)), and the F1-
score (Eq. (8)), were derived for each tumor type from this matrix (Yohannes & Al Rivan, 2022). 
The assessment findings from the baseline CNN established a vital benchmark for statistically 
assessing the performance improvements attained through the synergistic integration of CNN and 
Vision Transformer components in the proposed hybrid architecture (Ullah et al., 2023). Accuracy 
is mathematically defined as in Eq. (9). 
 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃 (6) 
 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁 (7) 
 

𝐹1𝑆𝑐𝑜𝑟𝑒 = 2	 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙 

(8) 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁 (9) 
 
 

𝐶𝑜𝑛𝑓𝑢𝑠𝑖𝑜𝑛	𝑀𝑎𝑡𝑟𝑖𝑥 = Q
𝑇𝑃	
𝐹𝑁

𝐹𝑃
𝑇𝑁R 

(10) 

2.9 Statistical Significance Analysis 

To assess whether the performance difference between the baseline CNN and the hybrid CNN–
ViT model was statistically significant, a McNemar test was conducted using paired predictions 
on the same test set. This test is suitable for paired classification comparisons, as it focuses on 
prediction disagreements rather than overall accuracy values. The McNemar statistic is computed 
using Eq. (11). 
 

𝑋- =
(|𝑏 − 𝑐| − 1)-

𝑏 + 𝑐  (11) 



 
JISKA (Jurnal Informatika Sunan Kalijaga) 
ISSN:2527–5836 (print) | 2528–0074 (online)  ■  134 

 
This article is distributed following Atribution-NonCommersial CC BY-NC as stated on 
https://creativecommons.org/licenses/by-nc/4.0/. 

3. RESULTS AND DISCUSSION 

Two model architectures, a baseline Convolutional Neural Network (CNN) and the proposed 
hybrid CNN–ViT, were trained and evaluated for a three-class brain tumor classification task 
(glioma, meningioma, and pituitary tumor). Each model underwent training for a maximum of 50 
epochs using 224×224 pixel RGB-formatted MRI scans. Performance was measured on three 
distinct data subsets: training (9,600 images), validation (2,400 images), and testing (3,000 
images). All experiments were executed on the Kaggle Notebook platform, employing dual T4 
GPU accelerators to ensure computational efficiency and a uniform training environment. 

3.1 Performance of the Baseline CNN Model 

The baseline CNN model attained a training accuracy of 99.53%, a validation accuracy of 98.75%, 
and a final test accuracy of 97.40%. The loss on the test set was noted at 0.1187. Figure 4 
displays the training and validation accuracy and loss curves. These figures demonstrate a 
consistent convergence tendency, despite slight oscillations noted during the initial training 
epochs. Subsequent examination of the classification metrics indicates a macro-averaged 
precision of 0.98, a recall of 0.97, and an F1-score of 0.97. The confusion matrix, depicted in 
Figure 5, reveals that misclassifications primarily transpired between the meningioma and 
pituitary tumor categories. A total of 78 out of 3,000 test photos were inaccurately classified. 
 

 
Figure 4 Training & Validation Accuracy 

 
Figure 5 Confusion Matrix Results Baseline CNN Model 
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The baseline CNN features around 14.7 million trainable parameters and an average training 
duration of about 126 seconds per epoch. Although these data indicate significant computational 
efficiency, the model's previously acknowledged shortcoming in modeling global spatial 
interdependence is demonstrated by the observed discrepancies in per-class recall rates. Table 
2 presents a detailed breakdown of the model's complexity and performance measures. 

Table 2 Summary of Complexity and Training Performance for the Baseline CNN Model. 

Epoch Akurasi 
Train 

Loss 
Train 

Akurasi 
Val 

Loss 
Val 

Learning 
Rate 

Waktu/Epoch 
(s) 

1 0.4396 14.6324 0.3333 8.6493 5.0×10⁻⁴ 211 
5 0.7988 1.8159 0.6988 1.9758 5.0×10⁻⁴ 173 
10 0.9269 0.6411 0.8929 0.6110 1.5×10⁻⁴ 173 
14 0.9559 0.3708 0.9717 0.2795 4.5×10⁻⁵ 172 
21 0.9803 0.1865 0.9879 0.1548 4.5×10⁻⁵ 174 
28 0.9833 0.1316 0.9925 0.1038 1.35×10⁻⁵ 174 
34 0.9893 0.0887 0.9917 0.0783 1.35×10⁻⁵ 173 
40 0.9923 0.0718 0.9937 0.0661 1.0×10⁻⁵ 173 
47 0.9941 0.0616 0.9962 0.0518 1.0×10⁻⁵ 173 
50 0.9941 0.0550 0.9971 0.0458 1.0×10⁻⁵ 173 

 

3.2 Performance of the Hybrid CNN–ViT Model 

The hybrid CNN–ViT architecture was developed to integrate the local feature extraction 
capabilities of a CNN with the global context modeling of a Vision Transformer. This was 
accomplished by incorporating a pre-trained ViT-Base-Patch16-224 model from the Hugging 
Face library into a parallel stream, markedly improving the model's feature representation 
capability. The hybrid CNN–ViT model, trained in the same configuration as the baseline, attained 
a training accuracy of 99.41%, a validation accuracy of 99.71%, and a final test accuracy of 
98.40%. The test loss was 0.0783, indicating a significant 34% decrease relative to the baseline 
CNN. The training curves in Figure 7 illustrate that the hybrid model demonstrated a significantly 
steadier convergence pattern compared to the baseline. The slight variations in the validation 
curve specifically indicate enhanced generalization ability. 
 

 
Figure 6 Training & Validation Loss Hybrid CNN-VIT 

The hybrid model attained a consistent macro-averaged precision, recall, and F1-score of 0.98, 
as determined by the assessment of classification measures. The confusion matrix, illustrated in 
Figure 8, indicates a significant drop in classification errors, with merely 40 misclassified instances 
out of 3,000 test images, or a 48.7% reduction relative to the baseline. Notable enhancements in 
accuracy were evident in distinguishing between the meningioma and pituitary tumor categories. 
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Figure 7 Confusion Matrix Results Hybrid CNN-VIT 

Nonetheless, this enhancement in efficiency is coupled with a considerable rise in model 
complexity. The hybrid CNN–ViT architecture contains around 85 million trainable parameters, 
primarily attributable to the incorporation of the extensive ViT backbone. The average training 
duration per epoch thus rose to around 172 seconds, about 36% higher than that of the baseline 
CNN. Nonetheless, the significant enhancements in accuracy and predictive stability are 
contended to warrant this computational burden, especially in clinical applications where 
diagnostic dependability is crucial. Table 3 delineates a summary of the hybrid model's complexity 
and performance characteristics. 

Table 3 Summary of Complexity and Training Performance for the Hybrid CNN–ViT 
Model. 

Epoch Akurasi 
Train 

Loss 
Train 

Akurasi 
Val 

Loss 
Val 

Learning 
Rate 

Waktu/Epoch 
(s) 

1 0.4396 14.6324 0.3333 8.6493 5.0×10⁻⁴ 211 
5 0.7988 1.8159 0.6988 1.9758 5.0×10⁻⁴ 173 
10 0.9269 0.6411 0.8929 0.6110 1.5×10⁻⁴ 173 
14 0.9559 0.3708 0.9717 0.2795 4.5×10⁻⁵ 172 
21 0.9803 0.1865 0.9879 0.1548 4.5×10⁻⁵ 174 
28 0.9833 0.1316 0.9925 0.1038 1.35×10⁻⁵ 174 
34 0.9893 0.0887 0.9917 0.0783 1.35×10⁻⁵ 173 
40 0.9923 0.0718 0.9937 0.0661 1.0×10⁻⁵ 173 
47 0.9941 0.0616 0.9962 0.0518 1.0×10⁻⁵ 173 
50 0.9941 0.0550 0.9971 0.0458 1.0×10⁻⁵ 173 

3.3 Statistical Significance Analysis 

To evaluate the statistical significance of the performance differences between the CNN model 
and the CNN–ViT hybrid, a McNemar test was performed based on prediction pairs on the same 
test data with reference to Equation (9). Based on the confusion matrix, the CNN model produced 
a total of 78 misclassifications, dominated by meningioma errors that were misclassified as tumors 
(71 cases), while the CNN–ViT hybrid model resulted in 48 errors with a lower error distribution 
in the same class. Prediction pair analysis showed that the CNN–ViT hybrid model managed to 
correct 38 errors previously made by CNN (b = 38), while generating only 8 new errors that did 
not appear in the CNN model (c = 8). By substituting the values b and c into Equation (9), the 
statistical value χ² is obtained as 18.28 with a degree of freedom of one, which results in a p-
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value < 0.001. These results show that the performance improvements achieved by the CNN–
ViT hybrid model are statistically significant and are not caused by mere random variation. 

3.4 Comparative Analysis Baseline CNN and Hybrid CNN–ViT 

A thorough comparative analysis was done to evaluate the efficacy of the proposed hybrid 
architecture between the baseline CNN and the hybrid CNN–ViT models. The comparison 
included a thorough array of performance parameters, including accuracy, loss, precision, recall, 
and the F1-score, evaluated throughout the training, validation, and hold-out test sets. In addition 
to predicted accuracy, the investigation examined critical technical factors, including the overall 
count of trainable parameters and the average training duration per session. These factors offer 
a comprehensive assessment of the trade-offs among model efficacy, computing efficiency, and 
scalability. Table 4 summarizes the findings of this head-to-head comparison, offering a 
quantitative basis for the ensuing debate. 

Table 4 Comparative Summary of Performance and Complexity for Baseline and Hybrid 
Models. 

Evaluation Aspect Baseline CNN Hybrid CNN–
ViT 

Training Accuracy 99.53% 99.41% 
Validation Accuracy 98.75% 99,71% 
Test Accuracy 97.40% 98.40% 
Test Loss 0.1187 0.0783 
Precision (average) 0.98 0.98 
Recall (average) 0.97 0.98 
F1-Score (average) 0.97 0.98 
Number of Prediction Errors 78 40 
Number of Parameters ±14,7 million ±85 million 
Training Time/Epoch ±126 seconds ±172 seconds 

 
This paper presents a thorough assessment of an innovative hybrid CNN–ViT architecture aimed 
at overcoming ongoing difficulties in the automated categorization of brain tumors using MRI data. 
The results validate that the suggested hybrid model exhibits a substantial and measurable 
performance superiority compared to a traditional CNN baseline. This result provides robust 
empirical support for the theoretical assertion that synergistically integrating the local feature 
extraction abilities of CNNs with the global context modeling of Vision Transformers constitutes a 
very effective approach (Ishrak et al., 2025). The subsequent sections will analyze these findings, 
addressing their theoretical and practical consequences, and will conclude with a summary of the 
study's shortcomings and potential directions for further research. 

Table 5 Comparison with Related Studies on Brain Tumor Classification 
No. Study Model Architecture Dataset Accuracy 
1 Tummala et al. 

(2022) 
ViT Ensemble (B/16, B/32, L/16, 
L/32) 

Figshare Brain 
MRI 

98.7% 

2 Ullah et al. 
(2023) 

Enhanced CNN (VGG16, VGG19, 
ResNet101, InceptionV3) 

Public Brain 
MRI 

97.0% 

3 Ali et al. (2025) ResNet50 Kaggle Brain 
MRI 

99.88% 

4 Emara et al. 
(2025) 

Unified CNN–ViT (HViT-CNN) Multi-domain 
MRI (Brain) 

98.4% 

5
  

This Study Parallel CNN–ViT (Dual-Stream)  Multi Cancer 
MRI 

98.4% 

 
The selected works encompass CNN-based, Vision Transformer-based, and hybrid CNN–
Transformer architectures to provide a balanced contextual comparison with the proposed 
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method. It is important to note that variations in reported performance may arise from differences 
in dataset characteristics, network design, and evaluation protocols. Accordingly, this comparison 
is intended to highlight architectural trends and relative performance rather than to assert absolute 
superiority. 
 
Based on the comparisons presented in Table 5, it can be observed that both the Vision 
Transformer, CNN-based approaches, and the CNN–Transformer hybrid architecture have 
shown competitive performance in the classification of brain tumors based on MRI images. The 
study by Tummala et al. (2022) emphasizes the power of global representation through the ViT 
ensemble, while Ali et al. (2025) and Ullah et al. (2023) show that an optimized CNN is still capable 
of achieving high accuracy on certain datasets. On the other hand, a hybrid approach such as 
that proposed by Emara et al. (2025) indicates the potential for the integration of local and global 
features within a single unified framework. In line with these findings, the results of this study 
show that the parallel CNN–ViT architecture is able to achieve performance comparable to the 
current approach, while maintaining classification stability and error reduction between classes. 
The difference in performance achievement between studies is influenced by the variation in the 
dataset, the number of classes, and the evaluation protocol used, so this comparison is intended 
to provide an empirical context for the position of this research in the existing research landscape. 

3.5 Theoretical Implications 

This study's primary conclusion offers strong empirical support for a fundamental theoretical 
principle in computer vision: the combined integration of local and global feature extractors 
produces a more effective and comprehensive data representation. Our hybrid model, which 
combines a CNN's ability to capture intricate local information with a ViT's capability to model 
extensive spatial dependencies, surpassed the performance of the standalone CNN architecture. 
The model's capacity to distinguish between physically identical tumor types, including 
meningioma and pituitary, is particularly clear, as indicated by a nearly 50% decrease in 
misclassification errors. This outcome provides robust empirical validation for the assertion made 
by Ishrak et al. (2025), which contends that hybrid models thrive specifically due to their 
integration of these two complementary feature extraction paradigms. Moreover, the efficacy of 
this parallel integration substantiates the findings of other scholars that the amalgamation of 
Transformer-based and convolutional techniques represents a highly promising and theoretically 
robust avenue for the progression of medical image analysis (Avcı, 2025; Ullah et al., 2023). 

3.6 Practical Implications 

This research illustrates the feasibility of a high-performance model that reconciles accuracy with 
deployability. The proposed hybrid CNN-ViT, exhibiting a test accuracy of 98.40% and a 
consistently elevated F1-score of 0.98, serves as a more dependable instrument for prospective 
clinical application than the baseline. Although this performance enhancement entails greater 
computing complexity, the trade-off is probably warranted in a clinical setting where diagnostic 
reliability is essential, a perspective aligned with the findings of (Tabassum & Nunavath, 2024). 
 
Furthermore, in comparison to previous high-precision models, our methodology presents a 
unique benefit. It circumvents the intricate, resource-demanding ensembling methods 
necessitated by certain models (Ma et al., 2025) and the operational difficulties associated with 
multi-stage systems (So-yun Park et al., 2025), offering a more efficient, end-to-end solution. 
Thus, the architecture established in this research can provide a solid basis for the forthcoming 
generation of AI-enhanced Clinical Decision Support Systems (CDSS). This corroborates the 
assertion by (Hossain et al., 2025) that these hybrid models are positioned to catalyze substantial, 
concrete advancements in healthcare and medical diagnostics. 

3.7 Limitations and Future Directions 

Notwithstanding the encouraging findings, this study possesses multiple limitations that delineate 
explicit opportunities for subsequent research. A significant limitation is the model's considerable 
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computational burden, a challenge observed in other high-performance hybrid methodologies 
(Park et al., 2025). Consequently. Consequently, future research should prioritize model 
optimization strategies (e.g., pruning, quantization) and validation across varied, multi-institutional 
datasets to guarantee clinical reliability. Moreover, the model's therapeutic value could be 
substantially enhanced by broadening its application to more specific tasks, such as detailed 
glioma grading or semantic segmentation. Simultaneously, the implementation of explainability 
(XAI) methodologies is essential for clarifying the model's decision-making process. This will 
enhance its credibility for clinical adoption, a vital element for implementing such models in 
practice, as indicated by (Chibuike & Yang, 2024). Addressing these issues will be essential for 
actualizing the complete potential of hybrid models in practical diagnostic applications (Hossain 
et al., 2025). 

4. CONCLUSIONS 

This study introduced and validated an advanced computational method for brain tumor 
classification by a comparative examination of a conventional Convolutional Neural Network 
(CNN) and an innovative parallel hybrid CNN–Vision Transformer (ViT) architecture. The main 
goal was to improve classification accuracy by combining the local feature extraction abilities of 
CNNs with the global spatial representation strengths of ViTs. The experimental findings indicated 
that the suggested hybrid CNN–ViT architecture consistently surpassed the traditional CNN 
baseline across all primary assessment parameters. The hybrid model attained a final test 
accuracy of 98.40%, exceeding the baseline CNN's 97.40%, and demonstrated enhanced 
validation stability along with a significant decrease in inter-class confusion. 
 
This research demonstrates that incorporating a ViT into a parallel CNN framework markedly 
boosts spatial modeling and augments the model's generalization skills on novel data. This 
method increases computational complexity, although the significant improvements in predicted 
accuracy and reliability provide a strong rationale for its use in critical clinical settings. This study 
significantly contributes to the advancement of deep learning-based diagnostic assistance 
systems in oncological radiology. It also establishes a novel trajectory for the investigation of 
parallel architectures that adeptly integrate local and global domains for enhanced medical image 
representation. 
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