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Abstract

The automated categorization of brain cancers from MRI is essential for improving diagnostic
precision. Traditional Convolutional Neural Networks (CNNs) are proficient in local feature
extraction but are constrained in their ability to capture long-range spatial relationships, hence
impairing performance on intricate malignancies. We propose a hybrid parallel architecture that
merges a CNN with a Vision Transformer (ViT) to combine local and global feature modeling. We
assessed our dual-branch model in comparison to a conventional CNN baseline using a curated
dataset of 15,000 MRI images categorized into three classes: glioma, meningioma, and pituitary.
The hybrid model exhibited enhanced performance, attaining 98.40% accuracy and 0.0783 loss,
in contrast to the baseline's 97.40% accuracy and 0.1187 loss. The substantial decrease in
misclassifications was validated by additional metrics, such as enhanced recall for the
meningioma category. The integration of local and global variables produces a more precise,
stable, and generalizable classification framework, demonstrating significant potential as a basis
for dependable Al-driven Clinical Decision Support Systems (CDSS) in neuroradiology.

Keywords: Artificial Intelligence, Convolutional Neural Network, Machine Learning,
Medical Image Analysis, Vision Transformer

Abstrak
Kategorisasi otomatis kanker otak dari citra MRI sangat penting untuk meningkatkan ketepatan
diagnosis. Jaringan Syaraf Konvolusional (CNN) tradisional memiliki kemampuan yang baik
dalam mengekstraksi fitur lokal, tetapi terbatas dalam menangkap hubungan spasial jangka
panjang, sehingga mengurangi kinerjanya pada kasus keganasan yang kompleks. Kami
mengusulkan arsitektur hibrida paralel yang menggabungkan CNN dengan Vision Transformer
(ViT) untuk memadukan pemodelan fitur lokal dan global. Model dua cabang ini dievaluasi dan
dibandingkan dengan model CNN konvensional menggunakan dataset terkurasi yang berisi
15.000 citra MRI yang diklasifikasikan ke dalam tiga kelas: glioma, meningioma, dan pituitary.
Model hibrida menunjukkan peningkatan kinerja yang signifikan, mencapai akurasi 98,40% dan
loss 0,0783, dibandingkan dengan model dasar (baseline) yang memiliki akurasi 97,40% dan loss
0,1187. Penurunan besar dalam kesalahan klasifikasi ini divalidasi melalui metrik tambahan,
termasuk peningkatan recall untuk kategori meningioma. Integrasi antara variabel lokal dan
global menghasilkan kerangka klasifikasi yang lebih akurat, stabil, dan dapat digeneralisasi
dengan baik, menunjukkan potensi besar sebagai dasar bagi Sistem Pendukung Keputusan
Klinis (Clinical Decision Support Systems/CDSS) berbasis Al yang andal di bidang
neuroradiologi.Abstrak dalam bahasa Indonesia ditulis dengan pola yang sama dengan abstrak
dalam Bahasa Inggris hanya tidak perlu dimiringkan.

Kata Kunci: Kecerdasan Buatan, Convolutional Neural Network, Pembelajaran Mesin,
Analisis Citra Medis

1. INTRODUCTION

The classification of brain tumors using Magnetic Resonance Imaging (MRI) is a crucial process
in the development of efficient diagnostic and treatment strategies in the field of neuroradiology
(Aggarwal et al., 2023; Fujima et al., 2023a). MRI is the preferred method for visualizing brain
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tissue due to its excellent soft tissue contrast, allowing for precise diagnosis of disease disorders
(Senan et al.,, 2022). Manual interpretation of high-dimensional MRI scans is sometimes
hampered by their labor-intensive nature and considerable inter-observer variability, leading to
diagnostic ambiguity (Alanazi et al., 2022; Omer, 2024). Therefore, advances in automation
techniques for image processing are becoming increasingly important to improve current clinical
practice (Dai et al., 2025).

The development of deep learning technology has triggered a paradigm shift in medical image
analysis by presenting an innovative methodology for image classification (Balamurugan &
Gnanamanoharan, 2023; Xie, 2023). Convolutional Neural Network (CNN) is a fundamental
architecture in this field, highly adept at hierarchical feature extraction and capable of mimicking
the diagnostic accuracy of humans (Jamali et al., 2024; Liu et al., 2024; Parulian, 2025).
Nevertheless, CNN faces significant obstacles related to intrinsic local bias. This limits its ability
to understand long-term spatial relationships, which is something important for distinguishing
tumor subtypes that are visually similar but histologically different (Hasan et al., 2025; Touvron et
al., 2022).

To overcome these limitations, Vision Transformer (ViT) emerged as a new method that breaks
down images into a series of patches and uses self-attention mechanisms to efficiently represent
global spatial dependencies (Ruthven et al., 2023; Wibowo et al., 2025). ViT shows potential in
better interpretability and prediction consistency between patches than classic CNN designs;
nevertheless, ViT is characterized by enormous data needs and weaker local bias (Khatun et al.,
2025).

Given the strengths and weaknesses of both architectures, CNN-VIT hybrid research has been
on the rise. This hybrid model combines CNN's advantages in local feature extraction and ViT's
capabilities in modeling global spatial relationships (Alayén et al., 2023; Emara et al., 2025; Zhang
et al., 2023). This combination has been shown to improve classification accuracy compared to
using CNN or ViT separately (Touvron et al., 2022). In the context of brain tumor classification,
recent research shows that the CNN-ViT hybrid model provides more precise, more reliable, and
more clinically interpretable predictions (Bukhari, 2024; Liu et al., 2023; Murugesan et al., 2025;
Yu et al., 2024). However, there is still a significant research gap. Most hybrid studies today use
sequential pipelines or partial integrations that have not fully leveraged the synergies between
local CNN extraction and the global context of ViT. In addition, comparative evaluation of a robust
CNN baseline with a uniform experimental setting is still very limited.

Based on the above observations, this study does not aim to introduce a new CNN-VIiT
architecture. Instead, it focuses on a controlled comparative evaluation between conventional
CNNs and parallel CNN-ViT hybrid models under identical experimental conditions. Although the
dual-flow CNN-VIT architecture has been explored in previous studies, there is still limited
empirical evidence regarding its actual performance gains when compared to robust CNN
baselines using the same dataset, preprocessing pipeline, and training protocols. Therefore, this
work emphasizes performance comparisons, resiliency analysis, and computational trade-offs
rather than architectural novelty.

2. METHODS
2.1 Dataset Acquisition and Characterization

This study uses the public brain MRI dataset from the Multi Cancer Dataset in the Kaggle
repository (Naren, 2024). From this dataset, a subset of 15,000 T1-weighted axial images was
selected with a balanced distribution among three categories of histologically confirmed tumors:
glioma, meningioma, and pituitary tumors, each of 5,000 images. The selection of this subset is
based on the need to ensure class balance, which is critical for the stability of the training and
evaluation of multi-class classification models.
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The dataset was then stratified into three parts: training (n = 9,600; 64%), validation (n = 2,400;
16%), and testing (n = 3,000; 20%). These divisions do not overlap to guarantee that the model
is tested on data that has not been seen at all, thus realistically measuring generalization
capabilities. This sharing strategy also follows best practices in the evaluation of deep learning
models on medical data to avoid overfitting bias.

It is important to note that the Multi Cancer Dataset does not provide explicit patient-level
identifiers. As a result, the dataset separation strategy is carried out at the image level using
cascading random separation. As a result, the study could not fully guarantee that slices
originating from the same patient did not appear in different subsets (training, validation, and
testing). These limitations are inherent in the structure of the dataset and are recognized as a
potential source of data leaks, which have also been reported in other studies using the same
dataset. A visualization of the morphological characteristics of the three tumor types (glioma,
meningioma, pituitary) is presented in Figure 1, which provides visual context and helps the
reader understand the anatomical differences between the classes.

Figure 1 Characteristics of brain tumors: (a) glioma; (b) meningioma; (c) pituitary tumor

2.2 Image Data Pre-processing

A systematic picture pre-processing pipeline was established to guarantee that all model inputs
met adequate quality and uniformity standards, thus facilitating an efficient and effective training
process (Goyal et al., 2025). Initially, all photos were subjected to pixel intensity equalization with
the use of a rescaling factor of 1/255. This approach normalizes pixel values to a range of 0 to 1
(Fujima et al., 2023b), hence improving data uniformity and diminishing model complexity (Goyal
et al., 2025). This normalization is essential for expediting model convergence and averting high-
intensity pixel values from disrupting the learning process (Goyal et al., 2025). Normalization is
formulated as Eq. (1).

1(x,y)

255 )

Inorm(x' y) =

Additionally, all images were scaled to a consistent dimension of 224 x 224 pixels to conform to
the input specifications of the CNN architectures, a common procedure in modern image
processing applications (Goyal et al., 2025). The data was processed in groups of 32 pictures. In
the multi-class classification challenge, labels were one-hot encoded utilizing the 'categorical’
mode, a commonly employed method that guarantees a suitable numerical representation for the
loss function (Goyal et al., 2025). The division of training and validation data was managed
automatically by configuring a validation_split option, which designated 20% of the training data
as the validation set. This method enhances data usage and enables more precise evaluation of
models during training (Goyal et al., 2025).

It is essential to emphasize that no data augmentation was implemented on the testing set; the
photos underwent just normalization. This methodology guarantees that the ultimate model
assessment is conducted on unblemished, undistorted data, yielding an accurate evaluation of its
performance on novel instances (Goyal et al., 2025). To ensure evaluation consistency, data
shuffling was deactivated during the test set processing. This process is crucial for preserving the
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stability of evaluation metrics and guaranteeing reproducible, reliable outcomes (Ali et al., 2025;
Goyal et al., 2025).

2.3 Data Augmentation Strategy

A systematic data augmentation method was exclusively applied to the training images to boost
the models' generalization capabilities and extend the distributional representation of the training
data (Krichen, 2023). The augmentation process comprised various geometric modifications:
random rotations of up to 20 degrees, random horizontal and vertical shifts of up to 20% of the
image dimensions, shear transformations, and random zooming (Keng & Merz, 2024; Krichen,
2023). Furthermore, horizontal flipping was utilized to create variations in object orientation, a
method recognized for enhancing model robustness against input variations (Dragan et al., 2023).
The augmentations were executed in real-time during the training phase via the
ImageDataGenerator class. This method eliminates the necessity for explicit storage of
augmented images, therefore guaranteeing memory and computational efficiency within the data
processing pipeline (Checcucci et al., 2023).

2.4 Architectural Design

This study encompassed the design, execution, and comparative assessment of two separate
deep learning systems. The first model is a standard Convolutional Neural Network (CNN),
functioning as the experimental baseline to set a performance benchmark. The second is our
suggested parallel hybrid CNN-VIT architecture, designed to address the intrinsic constraints of
the baseline model.

Both architectures underwent comparable pre-processing pipelines, data partitioning systems,
and training hyperparameters to guarantee a fair and rigorous comparison. This method isolates
architectural design as the principal variable affecting performance outcomes. The
comprehensive methodological architecture of this investigation, encompassing data collection to
final model evaluation, is visually encapsulated in Figure 2.
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Figure 2 Research Methodology

2.5 Baseline CNN Architecture

The foundational Convolutional Neural Network (CNN) model was developed with the Keras
Sequential API, a framework chosen for its efficacy and resilience in prototyping and constructing
deep learning models (Pumperla & Cahall, 2022). The architecture, specified in Table 1, consists
of two main components: a feature extraction backbone and a classification head. The feature
extraction backbone is engineered to handle RGB picture inputs measuring 224 x 224 pixels and
comprises five consecutive convolutional blocks. Each block consists of a Conv2D layer for
feature extraction, succeeded by BatchNormalization to enhance learning stability and expedite
convergence, and a MaxPooling2D layer for spatial down-sampling. The quantity of filters
escalates systematically over these blocks (e.g., 32, 64, 128), facilitating the model's capacity for
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hierarchical feature extraction, hence capturing patterns of escalating complexity from basic
edges to elaborate textures.

Subsequent to the convolutional backbone, the resultant feature maps are flattened into a vector
and transmitted to the classification head. This skull consists of three fully connected (Dense)
layers. A Dropout layer with a rate of 0.5 is employed as a regularization technique to mitigate
overfitting. The architecture concludes with a Dense layer employing a Softmax activation
function, producing a probability distribution among the three tumor types, which is calculated
using the formula in Eq. (2).

P =1 = —
(y l | x) ]C.=1 eZ]' (2)

Table 1 Architectural Specifications of the Baseline CNN Model.

. Number of Kernel .
Layer Output Size Filters/Unit Size Pooling

Conv2D + Batch Normalization 224x224 32 3%3 -
MaxPooling2D 112x112 - - 2%2
Conv2D + Batch Normalization 112%112 64 3%3 -
MaxPooling2D 56x56 - - 2%x2
Conv2D + Batch Normalization 56x56 128 3%3 -
MaxPooling2D 28x28 - - 2x2
Conv2D + Batch Normalization 28x28 256 3%3 -
MaxPooling2D 14x14 - - 2%2
Conv2D + Batch Normalization 14x14 512 3%3 -
MaxPooling2D %7 - - 2%2

2.6 Hybrid CNN-VIT Architecture

The suggested hybrid model was developed utilizing the Keras Functional API, a framework that
offers the necessary flexibility for designing intricate, non-linear network topologies, including a
parallel dual-stream architecture (Ali et al., 2025). Figure 3 demonstrates that this architecture is
engineered to concurrently process an input image via two separate yet parallel pathways: a
CNN-based feature extractor for local patterns and a Vision Transformer (ViT) backbone for global
context modeling. This synergistic methodology, demonstrated to be beneficial in medical image
analysis (Emara et al.,, 2025; Yu et al., 2024), seeks to develop a more nuanced and
comprehensive feature representation for the classification of brain tumors (Kim et al., 2025;
Tummala et al., 2022).

The initial stream, the CNN component, operates as a specialized local feature extractor. It utilizes
the identical foundational architecture outlined in the preceding section, with five consecutive
convolutional blocks (Conv2D, BatchNormalization, MaxPooling2D). This branch processes the
224x224 RGB input image and is chiefly tasked with capturing intricate spatial hierarchies,
including textures and morphological characteristics, essential for local tumor classification. The
second stream operates concurrently, employing a pre-trained Vision Transformer model, namely
the ViT-Base-Patch16-224 version from the Hugging Face library. This ViT backbone analyzes
the identical normalized input by initially segmenting it into a sequence of 16x16 patches. The
patches are subsequently linearly embedded and integrated using positional encodings (Wu et
al., 2020) to preserve spatial information, as shown in Eqg. (3). In this formulation, E is an
embedding matrix, E,, is positional encoding, and N is the number of patches. The generated
sequence of tokens is processed by the Transformer's self-attention layers using the relation
described in Eq. (4), enabling the model to grasp long-range dependencies and overarching
contextual linkages throughout the entire image (Deng et al., 2009). The model was initialized
with weights pre-trained on the ImageNet dataset to utilize transferred information and enhance
training stability.
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The feature vectors obtained from the terminal layers of both the CNN and ViT branches are
subsequently amalgamated. The fusion is accomplished by a Concatenation layer that integrates
the local and global feature representations into a singular, cohesive vector, as expressed in Eq.
(5). The concatenated vector is then processed by a classification head consisting of many Dense
layers, which are regularized by L2 regularization and Dropout. The architecture concludes with
a Dense layer utilizing a Softmax activation function to generate probability scores for the three
tumor classifications: glioma, meningioma, and pituitary, in accordance with known
methodologies (Touvron et al., 2022).
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Figure 3 Visualization of the CNN-ViT hybrid architecture

Figure 3 is the architectural diagram of the proposed parallel dual-stream hybrid CNN-ViT model.
The workflow commences with a 224x224 pixel MRI input, concurrently processed by two parallel
streams. The CNN component focuses on extracting local spatial characteristics, whereas the
ViT backbone encompasses global contextual links. The feature vectors generated by each
stream are subsequently concatenated and forwarded via a classification head composed of
dense layers. The final softmax output layer produces the categorization probabilities for the three
tumor categories: glioma, meningioma, and pituitary.

2.7 Vision Transformer Fine-Tuning Strategy

In this study, the Vision Transformer backbone (ViT-Base-Patch16-224) was fully fine-tuned
without freezing any of its layers. The model was initialized using ImageNet-21k pretrained
weights and trained jointly with the CNN branch in an end-to-end manner. Feature extraction from
the ViT branch was performed using the [CLS] token obtained from the last hidden state, which
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represents the global image-level representation. The same learning rate was applied to both
CNN and ViT components to maintain a unified optimization strategy.

2.8 Training and Evaluation Protocol

The evaluation process was created to objectively analyze and compare the efficacy of the two
proposed architectures in classifying three types of brain cancers using MRI scans (Murugesan
et al.,, 2025). The traditional CNN architecture functioned as the performance baseline for
evaluating the effectiveness of the suggested hybrid CNN-ViT model (Ullah et al., 2023). A range
of callback mechanisms was utilized to enhance the training process and mitigate overfitting. This
incorporated EarlyStopping with a patience of five epochs, which automatically terminated training
if the validation loss did not improve. The ModelCheckpoint callback was set up to preserve solely
the model weights that achieved optimal performance on the validation set. Furthermore,
ReduceLROnPlateau was employed to dynamically modify the learning rate, decreasing it when
progress in learning plateaued. This amalgamation of callbacks is an established technique for
augmenting training stability and promoting model generalization (Murugesan et al., 2025). Both
models underwent training for a maximum of 50 epochs, with performance evaluated across the
training, validation, and testing datasets (Ullah et al., 2023).

A confusion matrix (Eq. (10)) was produced for a detailed performance evaluation on the hold-out
test set. Key classification metrics, specifically precision (Eq. (6)), recall (Eq. (7)), and the F1-
score (Eq. (8)), were derived for each tumor type from this matrix (Yohannes & Al Rivan, 2022).
The assessment findings from the baseline CNN established a vital benchmark for statistically
assessing the performance improvements attained through the synergistic integration of CNN and
Vision Transformer components in the proposed hybrid architecture (Ullah et al., 2023). Accuracy
is mathematically defined as in Eq. (9).

TP

i 6

Precision TP+ FP (6)
TP

- 7

Recall TPTFN (7)

F1S 5 Precision X Recall )
=2 X
core Precision + Recall

TP+TN

A - 9
CeUracy = TP Y TN + FP + FN ©)

TP FP

10
FNTN (10)

Confusion Matrix = [

2.9 Statistical Significance Analysis

To assess whether the performance difference between the baseline CNN and the hybrid CNN-
ViT model was statistically significant, a McNemar test was conducted using paired predictions
on the same test set. This test is suitable for paired classification comparisons, as it focuses on
prediction disagreements rather than overall accuracy values. The McNemar statistic is computed
using Eq. (11).

_(b—cl-1?

b+c (1)

XZ
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3. RESULTS AND DISCUSSION

Two model architectures, a baseline Convolutional Neural Network (CNN) and the proposed
hybrid CNN-VIT, were trained and evaluated for a three-class brain tumor classification task
(glioma, meningioma, and pituitary tumor). Each model underwent training for a maximum of 50
epochs using 224x224 pixel RGB-formatted MRI scans. Performance was measured on three
distinct data subsets: training (9,600 images), validation (2,400 images), and testing (3,000
images). All experiments were executed on the Kaggle Notebook platform, employing dual T4
GPU accelerators to ensure computational efficiency and a uniform training environment.

3.1 Performance of the Baseline CNN Model

The baseline CNN model attained a training accuracy of 99.53%, a validation accuracy of 98.75%,
and a final test accuracy of 97.40%. The loss on the test set was noted at 0.1187. Figure 4
displays the training and validation accuracy and loss curves. These figures demonstrate a
consistent convergence tendency, despite slight oscillations noted during the initial training
epochs. Subsequent examination of the classification metrics indicates a macro-averaged
precision of 0.98, a recall of 0.97, and an F1-score of 0.97. The confusion matrix, depicted in
Figure 5, reveals that misclassifications primarily transpired between the meningioma and
pituitary tumor categories. A total of 78 out of 3,000 test photos were inaccurately classified.

Training and Validation Accuracy Training and Validation Loss
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— val \/ — val

10

0.9
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Figure 4 Training & Validation Accuracy
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Figure 5 Confusion Matrix Results Baseline CNN Model
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The baseline CNN features around 14.7 million trainable parameters and an average training
duration of about 126 seconds per epoch. Although these data indicate significant computational
efficiency, the model's previously acknowledged shortcoming in modeling global spatial
interdependence is demonstrated by the observed discrepancies in per-class recall rates. Table
2 presents a detailed breakdown of the model's complexity and performance measures.

Table 2 Summary of Complexity and Training Performance for the Baseline CNN Model.

Epoch Akurasi Loss Akurasi Loss Learning Waktu/Epoch

Train Train Val Val Rate (s)
1 0.4396 14.6324 0.3333 8.6493 5.0x10™ 211
5 0.7988 1.8159 0.6988 1.9758 5.0x1074 173
10 0.9269 0.6411 0.8929 0.6110 1.5x10™ 173
14 0.9559 0.3708 0.9717 0.2795 4.5x107° 172
21 0.9803 0.1865 0.9879 0.1548 4.5x107° 174
28 0.9833 0.1316 0.9925 0.1038 1.35x107° 174
34 0.9893 0.0887 0.9917 0.0783 1.35x107° 173
40 0.9923 0.0718 0.9937 0.0661 1.0x107° 173
47 0.9941 0.0616 0.9962 0.0518 1.0x107° 173
50 0.9941 0.0550 0.9971 0.0458 1.0x10°° 173

3.2 Performance of the Hybrid CNN-ViT Model

The hybrid CNN-VIT architecture was developed to integrate the local feature extraction
capabilities of a CNN with the global context modeling of a Vision Transformer. This was
accomplished by incorporating a pre-trained ViT-Base-Patch16-224 model from the Hugging
Face library into a parallel stream, markedly improving the model's feature representation
capability. The hybrid CNN-ViT model, trained in the same configuration as the baseline, attained
a training accuracy of 99.41%, a validation accuracy of 99.71%, and a final test accuracy of
98.40%. The test loss was 0.0783, indicating a significant 34% decrease relative to the baseline
CNN. The training curves in Figure 7 illustrate that the hybrid model demonstrated a significantly
steadier convergence pattern compared to the baseline. The slight variations in the validation
curve specifically indicate enhanced generalization ability.

Training and Validation Accuracy Training and Validation Loss

10 — Train — Train
— Val — val

Accuracy
Loss

J\

0 10 20 30 40 50 0 10 20 30 40 50
Epoch Epoch

Figure 6 Training & Validation Loss Hybrid CNN-VIT

The hybrid model attained a consistent macro-averaged precision, recall, and F1-score of 0.98,
as determined by the assessment of classification measures. The confusion matrix, illustrated in
Figure 8, indicates a significant drop in classification errors, with merely 40 misclassified instances
out of 3,000 test images, or a 48.7% reduction relative to the baseline. Notable enhancements in
accuracy were evident in distinguishing between the meningioma and pituitary tumor categories.
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Figure 7 Confusion Matrix Results Hybrid CNN-VIT

Nonetheless, this enhancement in efficiency is coupled with a considerable rise in model
complexity. The hybrid CNN-VIT architecture contains around 85 million trainable parameters,
primarily attributable to the incorporation of the extensive ViT backbone. The average training
duration per epoch thus rose to around 172 seconds, about 36% higher than that of the baseline
CNN. Nonetheless, the significant enhancements in accuracy and predictive stability are
contended to warrant this computational burden, especially in clinical applications where
diagnostic dependability is crucial. Table 3 delineates a summary of the hybrid model's complexity
and performance characteristics.

Table 3 Summary of Complexity and Training Performance for the Hybrid CNN-ViT

Model.
Epoch Akurasi Loss Akurasi Loss Learning Waktu/Epoch

Train Train Val Val Rate (s)
1 0.4396 14.6324 0.3333 8.6493 5.0x10™ 211
5 0.7988 1.8159 0.6988 1.9758 5.0x10™ 173
10 0.9269 0.6411 0.8929 0.6110 1.5x107 173
14 0.9559 0.3708 0.9717 0.2795 4.5x107° 172
21 0.9803 0.1865 0.9879 0.1548 4.5x107° 174
28 0.9833 0.1316 0.9925 0.1038 1.35x107° 174
34 0.9893 0.0887 0.9917 0.0783 1.35x107° 173
40 0.9923 0.0718 0.9937 0.0661 1.0x107° 173
47 0.9941 0.0616 0.9962 0.0518 1.0x107° 173
50 0.9941 0.0550 0.9971 0.0458 1.0x10°° 173

3.3 Statistical Significance Analysis

To evaluate the statistical significance of the performance differences between the CNN model
and the CNN-VIT hybrid, a McNemar test was performed based on prediction pairs on the same
test data with reference to Equation (9). Based on the confusion matrix, the CNN model produced
a total of 78 misclassifications, dominated by meningioma errors that were misclassified as tumors
(71 cases), while the CNN-VIT hybrid model resulted in 48 errors with a lower error distribution
in the same class. Prediction pair analysis showed that the CNN-VIiT hybrid model managed to
correct 38 errors previously made by CNN (b = 38), while generating only 8 new errors that did
not appear in the CNN model (c = 8). By substituting the values b and c into Equation (9), the
statistical value x? is obtained as 18.28 with a degree of freedom of one, which results in a p-
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value < 0.001. These results show that the performance improvements achieved by the CNN-
VIiT hybrid model are statistically significant and are not caused by mere random variation.

3.4 Comparative Analysis Baseline CNN and Hybrid CNN-ViT

A thorough comparative analysis was done to evaluate the efficacy of the proposed hybrid
architecture between the baseline CNN and the hybrid CNN-VIiT models. The comparison
included a thorough array of performance parameters, including accuracy, loss, precision, recall,
and the F1-score, evaluated throughout the training, validation, and hold-out test sets. In addition
to predicted accuracy, the investigation examined critical technical factors, including the overall
count of trainable parameters and the average training duration per session. These factors offer
a comprehensive assessment of the trade-offs among model efficacy, computing efficiency, and
scalability. Table 4 summarizes the findings of this head-to-head comparison, offering a
quantitative basis for the ensuing debate.

Table 4 Comparative Summary of Performance and Complexity for Baseline and Hybrid

Models.

Evaluation Aspect Baseline CNN Hyb”\?i.l(.:NN_
Training Accuracy 99.53% 99.41%
Validation Accuracy 98.75% 99,71%
Test Accuracy 97.40% 98.40%
Test Loss 0.1187 0.0783
Precision (average) 0.98 0.98
Recall (average) 0.97 0.98
F1-Score (average) 0.97 0.98
Number of Prediction Errors 78 40
Number of Parameters +14,7 million 185 million
Training Time/Epoch 126 seconds 172 seconds

This paper presents a thorough assessment of an innovative hybrid CNN-VIT architecture aimed
at overcoming ongoing difficulties in the automated categorization of brain tumors using MRI data.
The results validate that the suggested hybrid model exhibits a substantial and measurable
performance superiority compared to a traditional CNN baseline. This result provides robust
empirical support for the theoretical assertion that synergistically integrating the local feature
extraction abilities of CNNs with the global context modeling of Vision Transformers constitutes a
very effective approach (Ishrak et al., 2025). The subsequent sections will analyze these findings,
addressing their theoretical and practical consequences, and will conclude with a summary of the
study's shortcomings and potential directions for further research.

Table 5 Comparison with Related Studies on Brain Tumor Classification

No. Study Model Architecture Dataset Accuracy
1 Tummala etal. ViT Ensemble (B/16, B/32, L/16, Figshare Brain 98.7%
(2022) L/32) MRI
2 Ullah et al. Enhanced CNN (VGG16, VGG19, Public Brain 97.0%
(2023) ResNet101, InceptionV3) MRI
3 Ali et al. (2025) ResNet50 Kaggle Brain 99.88%
MRI
4 Emara et al. Unified CNN-VIT (HVIiT-CNN) Multi-domain 98.4%
(2025) MRI (Brain)
5 This Study Parallel CNN-ViT (Dual-Stream) Multi Cancer 98.4%
MRI

The selected works encompass CNN-based, Vision Transformer-based, and hybrid CNN-
Transformer architectures to provide a balanced contextual comparison with the proposed
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method. It is important to note that variations in reported performance may arise from differences
in dataset characteristics, network design, and evaluation protocols. Accordingly, this comparison
is intended to highlight architectural trends and relative performance rather than to assert absolute
superiority.

Based on the comparisons presented in Table 5, it can be observed that both the Vision
Transformer, CNN-based approaches, and the CNN-Transformer hybrid architecture have
shown competitive performance in the classification of brain tumors based on MRI images. The
study by Tummala et al. (2022) emphasizes the power of global representation through the ViT
ensemble, while Ali et al. (2025) and Ullah et al. (2023) show that an optimized CNN is still capable
of achieving high accuracy on certain datasets. On the other hand, a hybrid approach such as
that proposed by Emara et al. (2025) indicates the potential for the integration of local and global
features within a single unified framework. In line with these findings, the results of this study
show that the parallel CNN-ViT architecture is able to achieve performance comparable to the
current approach, while maintaining classification stability and error reduction between classes.
The difference in performance achievement between studies is influenced by the variation in the
dataset, the number of classes, and the evaluation protocol used, so this comparison is intended
to provide an empirical context for the position of this research in the existing research landscape.

3.5 Theoretical Implications

This study's primary conclusion offers strong empirical support for a fundamental theoretical
principle in computer vision: the combined integration of local and global feature extractors
produces a more effective and comprehensive data representation. Our hybrid model, which
combines a CNN's ability to capture intricate local information with a ViT's capability to model
extensive spatial dependencies, surpassed the performance of the standalone CNN architecture.
The model's capacity to distinguish between physically identical tumor types, including
meningioma and pituitary, is particularly clear, as indicated by a nearly 50% decrease in
misclassification errors. This outcome provides robust empirical validation for the assertion made
by Ishrak et al. (2025), which contends that hybrid models thrive specifically due to their
integration of these two complementary feature extraction paradigms. Moreover, the efficacy of
this parallel integration substantiates the findings of other scholars that the amalgamation of
Transformer-based and convolutional techniques represents a highly promising and theoretically
robust avenue for the progression of medical image analysis (Avci, 2025; Ullah et al., 2023).

3.6 Practical Implications

This research illustrates the feasibility of a high-performance model that reconciles accuracy with
deployability. The proposed hybrid CNN-VIT, exhibiting a test accuracy of 98.40% and a
consistently elevated F1-score of 0.98, serves as a more dependable instrument for prospective
clinical application than the baseline. Although this performance enhancement entails greater
computing complexity, the trade-off is probably warranted in a clinical setting where diagnostic
reliability is essential, a perspective aligned with the findings of (Tabassum & Nunavath, 2024).

Furthermore, in comparison to previous high-precision models, our methodology presents a
unique benefit. It circumvents the intricate, resource-demanding ensembling methods
necessitated by certain models (Ma et al., 2025) and the operational difficulties associated with
multi-stage systems (So-yun Park et al., 2025), offering a more efficient, end-to-end solution.
Thus, the architecture established in this research can provide a solid basis for the forthcoming
generation of Al-enhanced Clinical Decision Support Systems (CDSS). This corroborates the
assertion by (Hossain et al., 2025) that these hybrid models are positioned to catalyze substantial,
concrete advancements in healthcare and medical diagnostics.

3.7 Limitations and Future Directions

Notwithstanding the encouraging findings, this study possesses multiple limitations that delineate
explicit opportunities for subsequent research. A significant limitation is the model's considerable

O
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computational burden, a challenge observed in other high-performance hybrid methodologies
(Park et al., 2025). Consequently. Consequently, future research should prioritize model
optimization strategies (e.g., pruning, quantization) and validation across varied, multi-institutional
datasets to guarantee clinical reliability. Moreover, the model's therapeutic value could be
substantially enhanced by broadening its application to more specific tasks, such as detailed
glioma grading or semantic segmentation. Simultaneously, the implementation of explainability
(XAl) methodologies is essential for clarifying the model's decision-making process. This will
enhance its credibility for clinical adoption, a vital element for implementing such models in
practice, as indicated by (Chibuike & Yang, 2024). Addressing these issues will be essential for
actualizing the complete potential of hybrid models in practical diagnostic applications (Hossain
et al., 2025).

4. CONCLUSIONS

This study introduced and validated an advanced computational method for brain tumor
classification by a comparative examination of a conventional Convolutional Neural Network
(CNN) and an innovative parallel hybrid CNN-Vision Transformer (ViT) architecture. The main
goal was to improve classification accuracy by combining the local feature extraction abilities of
CNNs with the global spatial representation strengths of ViTs. The experimental findings indicated
that the suggested hybrid CNN-VIT architecture consistently surpassed the traditional CNN
baseline across all primary assessment parameters. The hybrid model attained a final test
accuracy of 98.40%, exceeding the baseline CNN's 97.40%, and demonstrated enhanced
validation stability along with a significant decrease in inter-class confusion.

This research demonstrates that incorporating a ViT into a parallel CNN framework markedly
boosts spatial modeling and augments the model's generalization skills on novel data. This
method increases computational complexity, although the significant improvements in predicted
accuracy and reliability provide a strong rationale for its use in critical clinical settings. This study
significantly contributes to the advancement of deep learning-based diagnostic assistance
systems in oncological radiology. It also establishes a novel trajectory for the investigation of
parallel architectures that adeptly integrate local and global domains for enhanced medical image
representation.
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