
CyberSecurity dan Forensik Digital e-ISSN: 2615-8442
Vol. 7, No. 2, November 2024, hlm. 62-68

62

Peningkatan Keamanan Server GraphQL Terhadap Serangan DDOS Dengan Tipe

Batch Attack Menggunakan Metode Rate Limiting

Diash Firdaus1, Idi Sumardi2, Ginanjar Nugraha3

1Informatics, Institut Teknologi Nasional, Bandung, Indonesia

2,3 Informatics Engineering, STMIK JABAR, Bandung, Indonesia

*Email: 1Diash@itenas.ac.id, 2Idis@stmikjabar.ac.id, 3ginz@stmikjabar.ac.id,

Abstrak

GraphQL telah memperkenalkan pergeseran paradigma tentang bagaimana aplikasi berkomunikasi dengan data,

menawarkan opsi yang lebih efisien dan ampuh dibandingkan dengan RESTful API tradisional. Namun, atribut

yang membuat GraphQL fleksibel dan efisien juga dapat membuatnya rentan terhadap ancaman siber yang

ditargetkan, termasuk serangan batch. Eksploitasi ini memanfaatkan kemampuan untuk menggabungkan beberapa

kueri atau mutasi ke dalam satu permintaan HTTP, yang dapat menyebabkan server kelebihan beban. Di berbagai

industri, termasuk di Facebook, tempat kelahiran GraphQL, teknologi ini digunakan untuk menangani pertukaran

data yang rumit antara aplikasi dan basis pengguna yang luas di seluruh dunia. Pembatasan kecepatan muncul

sebagai penanggulangan yang tangguh terhadap ancaman serangan batch. Dengan membatasi frekuensi

permintaan yang dapat dilakukan pengguna dalam interval waktu tertentu, pembatasan laju melindungi kinerja dan

waktu aktif server sekaligus menggagalkan penyalahgunaan. Pendekatan ini tidak hanya membantu dalam

manajemen sumber daya server yang bijaksana tetapi juga bertindak sebagai pencegah terhadap aktor jahat yang

ingin memanfaatkan sistem. Data empiris mengungkapkan bahwa pembatasan laju efektif dalam mengurangi

beban CPU dan Memori secara substansial, mengurangi penggunaan CPU rata-rata dari 4,8% menjadi 0,86% dan

penggunaan Memori dari 87MB menjadi 49,6MB selama serangan. Sebaliknya, server tanpa pembatasan

kecepatan mengalami lonjakan konsumsi CPU dan Memori setiap beberapa detik, sedangkan dengan pembatasan

kecepatan, lonjakan seperti itu terbatas pada 5 detik awal. Bukti ini menggarisbawahi bahwa pembatasan kecepatan

memungkinkan server untuk mempertahankan kinerja dan ketersediaan dalam menghadapi potensi serangan.

Kata kunci: DdoS, GraphQL, Batch Attack

Enhancing GraphQL Server Security Against Batch Attack Using The Rate-Limiting

Method

Abstract

GraphQL has introduced a paradigm shift in how applications communicate with data, offering a more

streamlined and potent option compared to traditional RESTful APIs. However, the very attributes that make

GraphQL flexible and efficient can also render it vulnerable to targeted cyber threats, including batch attacks.

These exploits leverage the capability to bundle multiple queries or mutations into a single HTTP request, which

can lead to server overload. Across various industries, including at Facebook, the birthplace of GraphQL, this

technology is employed to handle intricate data exchanges between applications and a vast user base worldwide.

Rate limiting emerges as a formidable countermeasure to the threat of batch attacks. By capping the frequency of

requests a user can initiate within a specified time interval, rate limiting safeguards server performance and

uptime while thwarting misuse. This approach not only aids in the judicious management of server resources but

also acts as a deterrent against malicious actors seeking to take advantage of the system. The empirical data

reveals that rate limiting is effective in substantially reducing the strain on CPU and Memory, decreasing average

CPU usage from 4.8% to 0.86% and Memory usage from 87MB to 49.6MB during an attack. In contrast, servers

without rate limiting experience a surge in CPU and Memory consumption every few seconds, whereas with rate

limiting, such a spike is confined to the initial 5 seconds. This evidence underscores that rate limiting enables

servers to sustain performance and availability in the face of potential attacks.

Keywords: DdoS, GraphQL, Batch Attack

63 CyberSecurity dan Forensik Digital, Vol. 7, No. 2, November 2024, hlm. 63-68

1. INTRODUCTION

GraphQL has revolutionized the way

applications interact with data by providing a more

efficient and powerful alternative to RESTful APIs

(Brito and Valente 2020). However, its very

flexibility and efficiency can also make it susceptible

to specific types of cyber attacks, such as batch

attacks. These attacks exploit the ability to send

multiple queries or mutations in a single HTTP

request, potentially overwhelming the server. In

various industrial sectors, for instance, Facebook,

which pioneered GraphQL, utilizes it to manage

complex data interactions between its applications

and millions of global users (Hanif et al. 2022). By

employing GraphQL, Facebook ensures that

applications only fetch the precise data required,

avoiding over-fetching, which is crucial given the

scale and complexity of the data they manage (Quiña-

Mera et al. 2023).

On another front, GitHub has integrated

GraphQL into their public API to offer developers

greater control over the data they request(Github

n.d.). This enables developers to make highly specific

requests and reduce the volume of unnecessary data,

which in turn facilitates more efficient integration and

improved performance.

In all these cases, GraphQL offers significant

advantages over traditional approaches such as

REST. By allowing clients to precisely specify the

data they need, applications can reduce network

overhead and accelerate responses to user requests,

while also simplifying the development process by

minimizing the number of API requests that need to

be made and reducing complexity on the server

side(Muzaki and Salam 2024).

Batch attacks on GraphQL servers can degrade

performance, lead to denial of service (DoS), and

even compromise sensitive data(McFadden et al.

2024). As the adoption of GraphQL continues to grow

across various industries, the imperative to safeguard

these systems against such vulnerabilities becomes

increasingly critical(Ogboada, VIE, and Matthias

2021).

Rate limiting is a robust defense mechanism that

can mitigate the risk posed by batch attacks. Limiting

the number of requests a user can make within a

certain time frame, it helps maintain server

performance and availability while protecting against

abuse. This method not only helps in managing server

resources efficiently but also serves as a deterrent

against attackers looking to exploit the system(Ren et

al. 2020)(Mahjabin et al. 2017).

In this paper, we will explore how rate limiting

can be strategically implemented to enhance the

security of GraphQL servers(Yunus 2019). We will

discuss the technical challenges posed by batch

attacks, the principles behind rate limiting, and how

they can be effectively implemented in a GraphQL

context. We will also examine case studies where rate

limiting has successfully mitigated batch attacks,

drawing lessons on best practices and potential

pitfalls. The insights gained will be valuable for

developers, security professionals, and IT managers

responsible for maintaining GraphQL servers.

This study focuses on strengthening GraphQL

server security against batch attacks by implementing

the rate-limiting method. Batch attacks exploit the

ability of GraphQL to handle multiple queries in a

single request, potentially overwhelming server

resources and affecting overall system performance.

By limiting the frequency of requests allowed within

a certain timeframe, rate limiting acts as a targeted

defense mechanism that can significantly reduce CPU

and memory usage during an attack. This approach

not only preserves server functionality under high

demand but also helps mitigate resource exhaustion,

ensuring a stable and secure environment for

GraphQL operations.

2. Theoretical Foundations

2.1. GraphQL Technology

GraphQL, developed by Facebook in 2012 and

released publicly in 2015, revolutionizes API

querying and data manipulation by treating data as a

graph, allowing clients to retrieve exactly what they

need through a single API call. This approach not

only minimizes over-fetching and under-fetching but

also enhances performance by reducing unnecessary

data transfer and processing (Meta 2015).

In GraphQL, a strongly typed schema acts as a

contract between the client and the server, ensuring

that both sides understand the structure of the data

being exchanged. This schema defines various types,

including scalars, enums, and objects, which detail

the data's shape and the operations available. Queries

in GraphQL are used for fetching data and are highly

customizable, letting clients specify exactly which

data fields to retrieve, which is particularly beneficial

for complex systems with interconnected data. On the

other hand, mutations provide a structured way to

modify data, similar to POST, PUT, and DELETE

methods in REST APIs, but with clearer expectations

of the input and output (Graphql 2024).

Resolvers play a crucial role in GraphQL's

architecture, acting as functions that connect API

queries and mutations to the actual data in databases

or other data sources. This setup allows GraphQL to

be extremely flexible in how data is stored and

retrieved, supporting various backend structures

without requiring changes on the client side.

Despite its advantages, GraphQL introduces

challenges in performance management, security, and

caching. Complex queries can potentially generate

significant loads on servers by requesting large

amounts of interconnected data or deeply nested

relationships. Unlike REST, which can leverage

simple HTTP caching mechanisms, GraphQL

requires more sophisticated, often custom, caching

solutions to maintain efficiency and performance.

Diash Firdaus, dkk, Enhancing GraphQL Server … 64

Moreover, the powerful querying capabilities also

necessitate robust security measures to prevent

abusive requests and data breaches.

2.2. Batch Attack / DoS Attack

Batch attacks represent a significant

cybersecurity threat that capitalizes on the specific

characteristics of batch processing systems, where

multiple transactions or operations are collected and

processed together at scheduled intervals. Unlike

systems that process transactions in real-time, batch

systems are inherently vulnerable because they often

lack immediate feedback mechanisms, which delays

the detection of anomalous activities. This

characteristic makes them attractive targets for cyber

attackers looking to exploit any delay in response or

gaps in security monitoring (Firdaus and Rianti

2023).

The primary method of exploitation in batch

attacks involves leveraging the predictable nature of

batch processing schedules. Attackers who

understand when batch processes run can time their

malicious activities to coincide with these processes,

potentially maximizing the damage or theft before

detection. For instance, an attacker might insert

malicious commands or corrupt data into a batch of

transactions knowing that the system will

automatically process all included items at a specific

time.

2.3. Security in GraphQL APIs

The study by Brito and Valente examines the

performance comparison between GraphQL and

RESTful APIs, as well as how GraphQL enhances

data efficiency while introducing additional security

risks. The flexibility and querying capabilities of

GraphQL make it vulnerable to exploitation through

batch attacks that can overload servers. This

highlights the importance of implementing security

measures such as rate limiting to address these

vulnerabilities in GraphQL APIs (Brito and Valente

2020).

2.4. Rate Limiting as a Defense Mechanism

against DDoS Attacks

The study conducted by Mahjabin et al.

discusses various techniques for preventing and

mitigating DDoS attacks, including the use of rate

limiting as an effective approach. Rate limiting helps

control the number of requests within a specific

period, maintaining server stability and preventing

damage from excessive requests, particularly in

GraphQL environments that are susceptible to DDoS-

like attack patterns (Mahjabin et al. 2017).

2.5. Techniques and Strategies for Mitigating

Attacks on GraphQL

McFadden et al. explore the use of

reinforcement learning to detect malicious queries in

GraphQL to prevent Denial-of-Service (DoS) attacks.

This machine learning-based approach allows for

dynamic identification of attack patterns, which can

complement rate limiting in managing security within

GraphQL environments. This study emphasizes the

importance of combining mitigation approaches to

strengthen the resilience of GraphQL servers against

cyber threats (McFadden et al. 2024).

3. RESEARCH METHOD

The flowchart illustrates a structured process for

research or project development, delineating a

sequence of steps from initiation to conclusion.

Figure 1 is a flow for the research method.

Figure 1 Research Method Flow

3.1. Problem Identification

in this step, the specific problem or research

question that needs to be addressed is identified. This

involves recognizing and defining the key issues or

challenges that the project aims to solve or

investigate.

3.2. Study Literature

This phase involves conducting a comprehensive

review of existing literature related to the identified

problem. The goal is to gather relevant information,

theories, and previous research findings that can

provide a foundation for understanding the problem

and guiding the project.

3.3. Environment Setup

During this step, the necessary environment for

conducting the project is established. This includes

setting up tools, software, hardware, and any other

65 CyberSecurity dan Forensik Digital, Vol. 7, No. 2, November 2024, hlm. 65-68

resources required to carry out the research or

development activities.

Table 1. Environment Setup

No Name Version

1 Operating System Windows 11

2 Client
Node JS v20

3 Server

4 Supporting Tools

Library Express

Library GraphQL

Library Pidusage

Library Express-Rate-Limit

5 Hardware
CPU AMD Ryzen 7 5800
RAM 16 GB

Figure 2 represents the topology for the research

conducted.

Figure 2 Topology GraphQL Experiment

3.4. Build Environment

This stage involves the actual construction or

configuration of the environment as per the

requirements identified in the previous step. It

ensures that all components are correctly installed and

operational for subsequent phases. When

constructing the environment from section 2.3, we

utilized one normal client, one client acting as a batch

attack attacker, one server without rate limiting, and

one server employing rate limiting. The attacker will

send 100 GET messages within 5 seconds.

3.5. Test Execution

After setting up the environment, we'll run tests

to make sure everything is working right. This means

doing experiments, simulations, or other tests to

collect data and check that our setup is good. During

this time, regular users will send messages like they

normally would, but we'll also have an attacker

sending a bunch of GET data to the server—100

messages every 5 seconds for a whole minute. This

could cause problems for the server.

3.6. Performance Evaluation Metrics

In this phase, the performance metrics obtained

from the test execution are analyzed and evaluated.

This involves assessing the data against predefined

criteria or benchmarks to determine the success and

effectiveness of the project in addressing the

identified problem. When measuring performance,

we will look at CPU usage and Memory Usage.

4. RESULT AND DISCUSSION

In Figure 3, we can see messages being sent

through the normal client at a rate of 1 request per

second.

Figure 3 Normal Client connect to GraphQL

Meanwhile, Figure 4 shows the CPU usage and

Memory usage when data is sent using the normal

client. The data set shows how the system's resources

are being used while running a server, possibly during

a batch attack. The CPU usage stays at 0.00%,

meaning there's little processing activity happening.

Memory usage starts at 44.48 MB and varies slightly

between 39.51 MB and 44.82 MB. This suggests the

system is managing tasks without much stress, as seen

by the steady CPU and small changes in memory use.

The lack of CPU spikes means the server isn't facing

heavy computation, possibly because it's early in the

attack and the system is being tested. The stable

memory usage shows good memory management.

However, it's important to keep monitoring and

analyzing the system to catch any issues if the attack

continues, using strategies like rate-limiting and real-

time monitoring to keep the system safe and stable.

Figure 4 CPU and Memory usage when data send from normal

client

Diash Firdaus, dkk, Enhancing GraphQL Server … 66

Figure 5 is a chart of CPU and Memory usage

when the GraphQL server is accessed by the Normal

client. The graph shows how a server's CPU and

memory are used over time. The blue line for memory

usage stays pretty steady around 40 MB, meaning the

system is managing its tasks well without much

stress. The red line, showing CPU usage, mostly stays

near 0% with a few small spikes, indicating

occasional processing activity that doesn't strain the

system. Overall, both CPU and memory use are

stable, suggesting the server is running smoothly. It's

important to keep watching these patterns to catch

any changes early and keep the system running well

and securely.

Figure 5 Comparison Chart of CPU and Memory Usage by the

Normal client

Figure 6 shows a quick increase in memory

usage from 44.71 MB to 101.60 MB in just 10

seconds, indicating a heavy load on the system, likely

due to a batch attack. At first, CPU usage is at 0.00%,

but it occasionally jumps up to 42.20%, showing

bursts of activity. This pattern suggests the system

might slow down, as high memory use can drain

resources and fluctuating CPU activity can lead to

unreliable performance. To tackle these issues, it's

recommended to use strategies like rate-limiting,

better memory management, and real-time

monitoring to keep the system stable and prevent

disruptions.

Figure 6 CPU and Memory usage when under a Batch Attack

It can be seen in Figure 7 that there is an increase

in CPU and Memory usage, with the highest Memory

usage reaching 110MB, compared to 48MB for a

normal user. The highest CPU usage during a Batch

Attack is 43%, whereas for a normal user, it remains

at 1,6%. Therefore, Batch Attacks significantly

impact CPU and Memory availability.

Figure 7 Server's graph when experiencing a Batch Attack

Figure 8 shows the status received by the

attacker when rate limiting is added to the server,

limiting to a maximum of 100 packets per 5 seconds.

Consequently, if a client sends more than 100 packets

within 5 seconds, packet dropping will occur, and the

attacker will not receive any data from the GraphQL

server.

Figure 8 status received by the attacker when rate limiting is

added to the server

Figure 9 shows the CPU and Memory usage

graph when the server is protected by rate limiting.

The spike in CPU and Memory usage only occurs at

the beginning when the GraphQL server is first

attacked. This happens because the rate-limiting

process kicks in when the GraphQL server receives

more than 100 packets within the first 5 seconds.

Figure 9 CPU and Memory usage graph when the server is

protected by rate limiting

This research demonstrates that the rate-

limiting method is highly effective in enhancing the

security of GraphQL servers against Batch Attacks.

By imposing limits on the number of requests that can

be processed within a certain timeframe, the server

can protect itself from the excessive load caused by

such attacks. The results of the measurements

indicate that rate-limiting successfully reduces the

workload on the CPU and Memory significantly,

from an average of 4.8% CPU usage and an average

67 CyberSecurity dan Forensik Digital, Vol. 7, No. 2, November 2024, hlm. 67-68

of 87MB Memory usage during an attack, to just an

average of 0.86% CPU and an average of 49.6MB

Memory usage. On servers without rate-limiting,

there is an explosion in CPU and Memory usage

every few seconds, whereas with rate-limiting, such

an explosion only occurs in the first 5 seconds.

Please be aware that Rate-limiting can restrict

legitimate user access, especially if the limits set are

too strict. This can cause frustration for users who are

not performing malicious activities (Clark 2019).

Furthermore, on systems that have many users or high

demand, implementing effective rate-limiting can be

challenging. Ensuring that the system can handle a

large number of requests and limit enforcement

requires a good infrastructure. Rate-limiting can also

be complicated to implement properly, especially if

there is a need to customize the limits based on the

type of user or service being accessed.

Another impact for users is that they may have

to wait before being able to take further action if they

reach the set limit (Serbout et al. 2023). If the limits

are not adapted to reasonable usage patterns, users

may experience difficulties in accessing the services

they need, which may lead to dissatisfaction.

It is worth comparing with other security such

as Firewalls that serve as a barrier between internal

and external networks and focus more on blocking

unauthorized access based on set rules (Anwar,

Abdullah, and Pastore 2021). MFA provides an

additional layer of security by requiring more than

one form of verification before allowing access,

which is a different approach from rate-limiting.

5. CONCLUSION

This research shows that rate-limiting is very

effective in securing GraphQL servers from Batch

Attacks. By limiting the number of requests a server

can handle in a certain time, the server can protect

itself from being overloaded. The study found that

rate-limiting significantly reduces CPU and memory

usage during an attack, from an average of 4.8% CPU

and 87MB memory to just 0.86% CPU and 49.6MB

memory. Without rate-limiting, CPU and memory

usage spikes every few seconds, but with it, spikes

occur only in the first 5 seconds. This means rate-

limiting helps keep the server running smoothly

during attacks.

Based on these findings, several steps are

recommended to improve security. First, optimize

rate-limiting settings to find the best balance between

protection and performance. Second, develop a real-

time monitoring system to quickly respond to threats.

Third, increase awareness among developers and

administrators about Batch Attacks and the

importance of security measures like rate-limiting.

Additionally, combine rate-limiting with other

security methods like authentication and encryption

for stronger defense. Finally, further research on

future attacks and new security techniques is

encouraged to better protect GraphQL servers against

complex threats. By following these steps, GraphQL

servers can be better equipped to handle evolving

security challenges.

BIBLIOGRAPHY

Anwar, Raja Waseem, Tariq Abdullah, and Flavio

Pastore. 2021. “Firewall Best Practices for

Securing Smart Healthcare Environment: A

Review.” Applied Sciences (Switzerland)

11(19). doi: 10.3390/app11199183.

Brito, Gleison, and Marco Tulio Valente. 2020.

“REST vs GraphQL: A Controlled

Experiment.” Proceedings - IEEE 17th

International Conference on Software

Architecture, ICSA 2020 (Dcc):81–91. doi:

10.1109/ICSA47634.2020.00016.

Clark, Scott. 2019. “Guide to the General Data

Protection Regulation (GDPR).” Guide to the

General Data Protection Regulation

(May):n/a.

Firdaus, Diash, and Resa Rianti. 2023. “DETEKSI

ANOMALI DAN SERANGAN LOW RATE

DDOS DALAM LALU LINTAS JARINGAN

MENGGUNAKAN NAIVE BAYES.”

05(02):140–48.

Github. n.d. “About the GraphQL API - GitHub

Docs.” Retrieved August 5, 2024

(https://docs.github.com/en/graphql/overview/

about-the-graphql-api).

Graphql. 2024. “Schemas and Types | GraphQL.”

Retrieved August 26, 2024

(https://graphql.org/learn/schema/).

Hanif, Fahri, Imam Ahmad, Dedi Darwis, Ichtiar

Lazuardi Putra, and Muhammad Fauzan

Ramadhani. 2022. “Analisa Perbandingan

Metode Graphql Api Dan Rest Api Dengan

Menggunakan Asp.Net Core Web Api

Framework.” Jl. ZA. Pagar Alam 3(2):2774–

5384.

Mahjabin, Tasnuva, Yang Xiao, Guang Sun, and

Wangdong Jiang. 2017. “A Survey of

Distributed Denial-of-Service Attack,

Prevention, and Mitigation Techniques.”

International Journal of Distributed Sensor

Networks 13(12). doi:

10.1177/1550147717741463.

McFadden, Shae, Marcello Maugeri, Chris Hicks,

Vasilios Mavroudis, and Fabio Pierazzi. 2024.

“WENDIGO: Deep Reinforcement Learning

for Denial-of-Service Query Discovery in

GraphQL.” Proceedings - 45th IEEE

Symposium on Security and Privacy

Workshops, SPW 2024 68–75. doi:

10.1109/SPW63631.2024.00012.

Meta. 2015. “GraphQL: A Data Query Language -

Engineering at Meta.” Retrieved August 26,

2024

Diash Firdaus, dkk, Enhancing GraphQL Server … 68

(https://engineering.fb.com/2015/09/14/core-

infra/graphql-a-data-query-language/).

Muzaki, Rizki Nuzul, and Abu Salam. 2024.

“Reducing Under-Fetching and Over-Fetching

in Rest Api With Graphql for Web-Based

Software Development.” 5(2):447–53.

Ogboada, J. G., ANIREH VIE, and D. Matthias.

2021. “A Model for Optimizing the Runtime of

GraphQL Queries.” Vol 9(3):11–39.

Quiña-Mera, Antonio, Pablo Fernandez, José María

García, and Antonio Ruiz-Cortés. 2023.

“GraphQL: A Systematic Mapping Study.”

ACM Computing Surveys 55(10). doi:

10.1145/3561818.

Ren, Kui, Tianhang Zheng, Zhan Qin, and Xue Liu.

2020. “Adversarial Attacks and Defenses in

Deep Learning.” Engineering 6(3):346–60. doi:

10.1016/j.eng.2019.12.012.

Serbout, Souhaila, Amine El Malki, Cesare Pautasso,

and Uwe Zdun. 2023. API Rate Limit Adoption

– A Pattern Collection. Vol. 1. Association for

Computing Machinery.

Yunus, Moh. 2019. “Analisis Kerentanan Aplikasi

Berbasis Web Menggunakan Kombinasi

Security Tools Project Berdasarkan Framework

Owasp Versi 4.” Jurnal Ilmiah Informatika

Komputer 24(1):37–48. doi:

10.35760/ik.2019.v24i1.1988.

