
IJID International Journal on Informatics for Development, e-ISSN :2549-7448
Vol. 5, No. 2, 2016

Translations of Embedded Theorems in

Z Specifications

Maria Ulfah Siregar John Derrick Ahmad Subhan Yazid
Informatics Department, Master

Program
Department of Computer

Science,
Informatics Department,
Undergraduate Program

Faculty of Science and
Technology

The University of Sheffield Faculty of Science and
Technology

UIN Sunan Kalijaga

Sheffield, United Kingdom UIN Sunan Kalijaga

Yogyakarta, Indonesia Yogyakarta, Indonesia
maria.siregar@uin-suka.ac.id yazid.anfalah@gmail.com

Abstract—This paper discusses our proposal on how to embed theorems in Z specifications. One reason behind this proposal is to ease Z
users in writing theorems directly in their Z specifications. Another reason is not to overwhelm Z users in learning other language, which
in this case is SAL language. In doing so, we need to inform Z2SAL programmers how to translate these embedded theorems into
equivalence theorems in SAL specifications. Based on our experiments, Z2SAL is able to translate these kind of theorems and SAL model
checker is also able to model check SAL specifications with theorems that are written directly in the Z specifications.

Keywords--Z; theorems; Z2SAL; SAL model checker.

IJID International Journal on Informatics for Development, e-ISSN :2549-7448
Vol. 5, No. 2, 2016

This article is distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International
License. See for details: https://creativecommons.org/licenses/by-nc-nd/4.0/

27

I. INTRODUCTION

Previously, a user added several theorems to the generated
SAL file in order to allow the system, which is modelled by
the Z specification, verifies these theorems. By doing so, this
user should know how the SAL language presents this
theorem, which might be a problem to learn other language,
the SAL language, especially a user who just knows Z
language.

Then, we had an idea, how if the user specifies the theorem
inside the Z specification. We proposed this idea to Z2SAL
programmers and the method how to achieve this goal.
Z2SAL programmers accept our proposal and follow our
method. As a result, the current Z2SAL can translate either a
Z specification or a Z specification added with theorems.

Following is brief descriptions about Z notation, Z2SAL,
SAL model checker, and Model Checking. For further
explanation, interested readers can refer to paper, especially
the ones in [1,2,3,4].

A. Z Notation

Z is a notational convention for logic and simple
mathematics. Z is a model based notation, which has states
and operations. As mentioned earlier, it is a notation, not a
method. Furthermore, Z is a not tool either, but several tools
implementing Z are available, tough is not many. Z is also not
an executable since it is not a programming language. Z is
able to express concurrency and objects after it has been
extended. Z is usually used to design a specification of a
system. Thus, this specification tells us what the system can
do, not how to do something.

B. Z2SAL

Z2SAL is a translation tool built by researchers from the
University of Sheffield, United Kingdom. They John Derrick,
Siobhan North, and Anthony Simons. As its name, it can do
translations on its input file which is a Z specification to its
output which is a SAL specification representing that Z
specification. Sometimes, Z2SAL also generates several
context files, which are mathematical toolkits, needed to
model check that SAL file later with SAL model checker.
Mathematical toolkits built for Z2SAL are rich enough to
represent Z notation.

In addition to a translation tool, Z2SAL can also do
refinement. Achieving this function, Z2SAL needs two Z
specification files.

C. SAL Model Checker

SAL model checker is a tool that can model check
systems. It can accept inputs of SAL specifications. SAL,
which stands for symbolic analysis laboratory, previously is a
collaboration research of two famous universities which then
this tool is developed further at SRI. SAL model checker has
ability to do symbolic model checking with command smc. A
symbolic model checker supports LTL (Linear-time Temporal
Logic) and CTL (Computation Tree Logic) formulas. SAL

model checker can also do bounded model checking with
command bmc. This bounded model checker supports only
LTL formulas.

D. Model Checker

Model checker is one method of automatic formal
verification. This method consists of three steps: modelling,
formalization of properties, and verification [5]. Modelling is
performed using one of formal specification languages.
Formal logics, which are usually in temporal logics form, are
used to do the second step. The third step is to check whether
the model satisfies properties/ theorems given in temporal
logics form.

As mentioned above, formal logics in model checker is
formed from temporal logics. These temporal logic, which are
used in theorems, are to specify concurrent systems. This logic
can describe events in ordered time. With this logic, a formula
can be true in some states and false in other states dynamically.

Based on time, the temporal logic is classified into two:
the linear time logic (LTL), and the branching time logic
(CTL). In LTL, a time is a set of paths, where a path is a
sequence of time instances. Meanwhile, in CTL, a time is
represented as a tree, rooted at the present moment and
branching out into the future. SAL model checker can support
both of these logics, please check the above description.

In this paper, we discuss briefly this proposal. A further
discussion can be read in [6]. We begin the discussion with the
current method, which is adding theorems in the generated
SAL specification. The flow of the following section begins
with the examples of theorems. Then, we do manual
verification on these theorems. Finally, we use SAL model
checker to do the verification.

II. ADDING THEOREMS IN THE GENERATED SAL

A. Examples

At the end of our SAL file of club.tex (can be read in
[6] subsection 2.2.4, several LTL theorems and CTL theorems
were added as presented in [6] subsection 3.1. We write again
here those theorems as follows:

 th1: THEOREM State |- G (NOT
(members = set {PERSON;} ! full));

It is not the case such that a club ever gets full. G
means always.

 th2: THEOREM State |- G (NOT(set
{PERSON;}! empty?(members)));

It is not the case such that the club ever be empty.

 th3a: THEOREM State |- G (EXISTS(m,
n: PERSON): m /= n);

There exists at least one instance of members, who
is different from other members. EXISTS

IJID International Journal on Informatics for Development, e-ISSN :2549-7448
Vol. 5, No. 2, 2016

This article is distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International
License. See for details: https://creativecommons.org/licenses/by-nc-nd/4.0/

28

represents an existential statement, whereas /= is an
operator to ask whether to variables are not the same.

 th3b: THEOREM State |- G
(NOT(EXISTS(m, n: PERSON): m /= n));

It is not the case such that there is a member of
members, who is different with others.

 th4a: THEOREM State |- G (FORALL(m,
n: PERSON): m /= n);

All members are different. FORALL represents a
universal statement.

 th4b: THEOREM State |- G
(NOT(FORALL(m, n: PERSON): m /= n));

It is not the case such that all members are different.

The next subsection will discuss about verifications of those
theorems.

B. Manual Verification

Before these theorems were verified by using SAL model
checker, they were investigated manually. Following is the
discussion of this manual verification.

For the first theorem, th1, it should be invalid since there
is an operation JoinOk that can add a member to this club.
Furthermore, this operation only stops if the maximum
number of members is reached.

For th2, it is also invalid since in the initialization of this
system, this club has no member. In other words, this system
has ever been empty, especially in the initialization stage.

For th3a, it will be proved. The operation performed by
JoinOk schema will only add a new member who has not
been available in this club.

For th3b, it is the opposite of th3a theorem. Thus it is
invalid.

th4a is also invalid due to the assignment of no members
for this club in the initial state. Thus, in the initialization state,
all members are the same, which are empty.

The last theorem, th4b, is the opposite of theorem
th4a. Thus, it will be proved or it is valid.

C. Verification by SAL Model Checker

Based on these prior knowledge, SAL model checker was
run on this generated SAL file to verify those theorems. The
summary of that verification is given as follows and they are
the same as our expected results:

The assertion 'th1' located at
[Context: club, line(55), column(0)] is
invalid.

The assertion 'th2' located at
[Context: club, line(58), column(0)] is
invalid.

The assertion 'th3a' located at
[Context: club, line(61), column(0)] is
valid.

The assertion 'th3b' located at
[Context: club, line(64), column(0)] is
invalid.

The assertion 'th4a' located at
[Context: club, line(67), column(0)] is
invalid.

The assertion 'th4b' located at
[Context: club, line(70), column(0)] is
valid.

Many other examples given on other sections in [6] show
this practice. Let us now move to the next discussion on
embedded theorems.

III. EMBEDDED THEOREMS ON Z SPECIFICATIONS

Duke and Smith in [7] mention that properties of a system
such as liveness can be evaluated by presenting a specification
of a system using Z notation. There are two alternatives to
express such properties.

The first alternative is to express them using Z notation.
The second one is to express them using temporal logic
notation. One benefit of using the second alternative is
predicates are more readable and shorter than the former.

Supporting that second alternative, King [8] added tags for
presenting several temporal logics to his Object Z package.
Currently there are three tags available, as follows:

 : this symbol means always

 : this symbol means next

 : this symbol means eventually

Based on their meanings, we assume those three tags represent
LTL formulas.

Regardless of research found in [2,3], only fewer tools that
support embedded temporal theorems in Z specifications.
Therefore, our research aims to propose extensions to Z
standard notation adapted by Z2SAL to also include King’s
temporal logic.

In our proposal [6], syntax to define the embedded
theorems is adapted from Object-Z Concrete Syntax [9]. This
syntax is an extension to syntax of Spivey [10]. Based on
discussion on [6], the theorems are defined in the predicate
part of schemas.

We propose several steps of how to translate embedded
properties on a Z specification [6]. The translation of these
properties will follow Z2SAL’s form of theorems in SAL
specifications which have a form as follows:

th i: THEOREM name_of_module |-
temporal_logics;

IJID International Journal on Informatics for Development, e-ISSN :2549-7448
Vol. 5, No. 2, 2016

This article is distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International
License. See for details: https://creativecommons.org/licenses/by-nc-nd/4.0/

29

Our steps are:

 th is an identifier, so it is possible to modify this
identifier’s name to other identifier’s name.

 Every th is followed by i. An i is a non-zero natural
number starting from 1, which plays as an index. This
i number will be given for every line of predicates
containing temporal logics which begins with 1 and
this number will be incremented by 1 for each
successor of such a line. The i is also part of the user
identifier, so it can be modified to other identifier.

 THEOREM is a SAL keyword, but it is not case-
sensitive.

 name_of_module is taken from the name of the SAL's
module and is case-sensitive.

As said in [6], King’s style for representing temporal
logics are different with temporal logics of SAL
specifications. However, there are equivalences between both
syntaxes. The table has been given in [6] which shows these
equivalences (please refer to Table 3.1). From the table, SAL
has G for representing always, X for representing next, and F
is for eventually.

For representing U(p,q), which is not supported in
King’s syntax, we have given the equivalent notation for
U(p,q) in [6]. U(p,q) means that p holds until q holds on
a particular path [4].

The next discussion gives one example of schema that
represents a theorem from our experiments in [6] relating to
this proposed translation method. The example is taken from
[10] namely Birthday Book Specification.

As mention in [6], the property that need to be proven is
“If it is known the birthday of a person then the person should
be recognized”. This schema has a predicate part that
represent that property. It begins with a universal statement,
thus for all person in this birthday book (we take their names),
there will exist one unique date of birth for each person (it is
represented by an existential statement). The schema that is
defined is as follows [6]:

 WhichDate

ΞBirthdayBook

∀n: NAME ⦁ ∃d: DATE ⦁

 (d = birthday(n) ⇒ n ∈ known)

After the complete specification is translated by Z2SAL, the
generated SAL specification for the above schema is as shown
in Fig. 1 as follows:

Figure 1. A SAL translation for the above embedded theorem

The theorem in Fig. 1 is VALID, in other word; it is satisfied
by the system. The command that is given to SAL model
checker to verify the above embedded theorem is as below:

$ sal-smc birthdaybook_templog

We specify a new theorem for this paper that we also
embedded in the same Z specification as above. Thus theorem
in not available in [6]. This theorem represents “if there is a
birthday date for someone, it means that this person is already
in the system which means that the name is not a new name.
In other word, only one name is recorded for one date. The
theorem is as follows:

 JustOnePerson

ΞBirthdaybook

newName?: NAME

∀n: NAME⦁ ∃d:DATE⦁

(d = birthday(n) ⇒ newName? = n)

Z2SAL generates a SAL theorem as follows:

th2 : theorem State |- (FORALL (q__4 :
NAME) : (EXISTS (q__5 : DATE) : G (q__5 =
birthday(q__4) => newName? = q__4)));

We model check the SAL specification then. The command
given to SAL model checker and results are as follows:

$ sal-smc birthdaybook_templog

Summary:

The assertion 'th1' located at [Context:
birthdaybook_templog, line(71),
column(2)] is valid.

The assertion 'th2' located at [Context:
birthdaybook_templog, line(74),
column(2)] is valid.

birthdaybook_templog is the name of the context file
which represents the name of SAL file. Thus, we use
symbolic model checker of SAL model checker and we use
LTL formulas. The first theorem uses a LTL operator, namely
G. This operator means its argument is always true. It is similar
to the second theorem; this theorem uses also the same LTL
operator, G.

Based on result given by model checking the second
theorem, we could assume that this birthday book system only
specifies one date of birthday for one person. Thus, it does not
support if there are many persons have the same birthday date.
This behavior is quite surprising, it is not usual.

IV. RESULT AND DISCUSSION

Our complete results from experiments in this proposal are
given in [6]. Interested readers are encouraged to read that
paper. We could obtain the translations of theorems, which are
embedded in Z specifications. Z2SAL are able to perform

IJID International Journal on Informatics for Development, e-ISSN :2549-7448
Vol. 5, No. 2, 2016

This article is distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International
License. See for details: https://creativecommons.org/licenses/by-nc-nd/4.0/

30

translation over these embedded theorems. We also could
model check the generated SAL specifications using SAL
model checker. Thus, SAL model checker seems that it does
not differentiate the theorems, which are defined directly in
the Z specification from the ones, which are defined in the
SAL specification. For the discussion about the last paragraph
in the previous section, to allow shared birthday date among
person, the Z specification seems to be revised. In general, this
paper contribute to the proposal of embedded theorems in Z
specifications and model checking of the generated SAL
specification using SAL model checker.

V. CONCLUSION

There are six experiments which have been conducted in
our research and written in [6]. We reported again one of those
experiments in this paper. In addition to this experiment, we
add our new example for this paper. Thus, there are two
experiments in this paper. Based on these experiments, we
conclude that Z2SAL supports embedded theorems in Z
specifications. It is because Z2SAL can translate these
theorems into the equivalence theorems in SAL specifications.
These theorems can also be verified by SAL model checker.
Furthermore, many persons who share the same birthday date
could be assigned as future research.

ACKNOWLEDGMENT

We want to thank John Derrick, Siobhan North and
Anthony Simons who allow us use their Z2SAL. Furthermore,
our thanks also are for discussion on Z2SAL, Z and SAL with
those three researchers.

REFERENCES

[1] J. Jacky, The Way of Z: Practical Programming for Formal Methods.
Cambridge University Press, 1997.

[2] J. Derrick, S. North, and T. Simons, “Issues in Implementing a Model
Checker for Z,” in Formal Methods and Software Engineering, 2006,
pp. 678–696.

[3] L. de Moura, S. Owre, and N. Shankar, “The SAL Language Manual,”
2019.

[4] M. Huth and M. Ryan, Logic in Computer Science: Modelling and
Reasoning about Systems. Cambridge University Press, 2004.

[5] R. Pelanek, “Reduction and Abstraction Techniques for Model
Checking,” Masaryk University, 2006.

[6] M. U. Siregar, “Support for Model Checking Z Specifications,” The
University of Sheffield, 2016.

[7] R. Duke and G. Smith, “Temporal Logic and Z Specification,” Aust.
Comput. J., vol. 21, no. 2, pp. 62–66, 1989.

[8] P. King, “Printing Z and Object_Z Latex Documents,” Dep. Comput.
Sci. Univ. Queensl., vol. 393, pp. 404–410, 1990.

[9] R. Duke, P. King, G. Rose, and G. Smith, “The Object-Z Specification
Language: Version 1,” 1991.

[10] J. M. Spivey, The Z Notation. Prentice Hall New York, 1989.

