
DOI:10.14421/ijid.2021.2839 IJID (International Journal on Informatics for Development), e-ISSN: 2549-7448

 Vol. 10, No. 2, 2021, Pp. 102-111

Analysis of Remote Access Trojan Attack using

Android Debug Bridge

Deco Aprilliansyah

Master Program of Informatics

Universitas Ahmad Dahlan

Yogyakarta, Indonesia

deco2007048003@webmail.uad.ac.id

Imam Riadi

Department of Information Sustem

Universitas Ahmad Dahlan

Yogyakarta, Indonesia

imam.riadi@is.uad.ac.id

Sunardi

Department of Electrical Engineering,

Universitas Ahmad Dahlan

Yogyakarta, Indonesia

sunardi@mti.uad.ac.id

Article History

Received July 25th, 2021

Revised January 6th, 2022

Accepted January 10th, 2022

Published February, 2022

Abstract—The security hole in the Android operating system is sometimes not realized by users such as malware and exploitation by

third parties to remote access. This study was conducted to identify the vulnerabilities of the Android operating system by using

Ghost Framework. The vulnerability of the Android smartphone is found by using the Android Debug Bridge (ADB) with the

exploitation method as well as to analyze the test results and identify remote access Trojan attacks. The exploitation method with

several steps from preparing the tools and connecting the testing commands to the testing device has been conducted. The result

shows that Android version 9 can be remotely accessed by entering the exploit via ADB. Some information has been obtained by third

parties, enter and change the contents of the system directory by remote access like an authorized to do any activities on the device

such as opening lock screen, entering the directory system, changing the system, etc.

Keywords—security hole; operating system; malware; ghost framework; vulnerability

https://dx.doi.org/10.14421/ijid.2021.2839

IJID (International Journal on Informatics for Development), e-ISSN: 2549-7448

Vol. 10, No. 2, 2021, Pp. 102-111

This article is distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

See for details: https://creativecommons.org/licenses/by-nc-nd/4.0/

103

1 INTRODUCTION

Facing the era of industry 4.0 every person at least has one

smartphone to communicate, exchange data, look for

information, or to entertain such as playing video games,

online studies, listening to music, and watching a video

[1][2]. The data statistics from 2010 show 3,6 billion

smartphone users [3]. There are many operating systems on

smartphones, one of them is Android with a working

framework based on Linux kernel and created by Google [4].

The operating system based on the open-source Linux kernel

offers high flexibility because it can be customized by

dominant operating systems. Initially, Android applications

were modified within Java [5]. Android is open source so

anyone can contribute to developing this system [6]. This

advantage also raises security concerns [7]. In the Android

operating system, there are no security holes not realized by

users. Many kinds of security threats can happen such as

malware and exploitation by third parties to remote access

[8]. On the Android operating system, attacks occur through

networks, applications, and firmware vulnerabilities in the

operating system itself. Attacks on the Android system can be

classified into attacks on hardware, attacks on the kernel,

attacks on the hardware abstraction layer, and attacks on

application packages [9]. Types of attacks through the

network such as DDoS by flooding data on the FTP server,

spoofing on voice conversion, and Trojan Horses on banking

applications [10], [11],[12]. The types of attacks are through

applications such as cracking, banking trojans, and

eavesdropping.
Google proposes a security patch update every month for

Android system users [13] with contains the list of security
that has been fixed, every list has several common
vulnerabilities and exposures [14]. Usually, the update is in a
form of a binary file. Unfortunately, only a few types of
smartphones can get it whereas getting the update of a
security patch can minimalize the security risk on the device
itself. It is caused by there are so many different active
versions of Android making security updates and
vulnerability responses make this issue difficult to
control[15].

Vulnerability detection is one way to find security holes
that aims to show potential security leaks. The security risk
on Android can be minimalized by using security analysis on
the vulnerability system. In a digital environment where there
are various cyber threats, regular vulnerability assessments
are the right choice to protect our data. In this way, sensitive
data can be properly maintained and protected from various
adverse effects of cyber-attacks. Various methods can be
implemented such as exploitation, penetration tester, and man
in the middle attack (MITM) [7],[16],[17]. Users can use
several tools like Apktool, Metasploit Framework,
TheFatRat, ADB-Toolkit, Ghost Framework, Hacktronian,
etc.

The Ghost Framework tool can be used to test whether or
not remote access [18]. These tools will be used in this study
to do exploitation the smartphone with the Android system.
After obtaining the result and analyzing the security risk of

the Remote Access Trojan, the Android user is expected to be
more aware and keep the security on their device.

Based on the background of the problem above, this
research conducts a literature study using research sources
that have been carried out previously as research references.
Some of the sources used as references include the first
research conducted by R. Mayrhofer, J. Vander Stoep, C.
Brubaker, and N. Kralevich in 2021 entitled "The Android
Platform Security Model" which is the research of security
model on Android. This model requires a difficult balance
between end-user security, privacy and usability, application
developers’ assurance, and system performance under strict
hardware constraints. Based on the threat model definition
and the context of the Android ecosystem in which it runs,
they analyzed how different security measures in the past and
current Android implementations work together to mitigate
current threats. This article aims to document the Android
security model and determine its impact in the context of
ecosystem constraints and historical development. In
particular, this research is encouraging contribution and, for
the first time, defined an Android security model based on
security principles and the broader environment in which
Android runs. This article focuses on the security and privacy
measures of the Android platform itself, that is, the code that
runs on user devices belonging to AOSP.

The second one is research conducted by A. Amin, A.
Eldessouki, MT Magdy, N. Abdeen, H. Hindy, and I. Hegazy
in 2019 with the research title "AndroShield: Automated
Android Applications Vulnerability Detection, a Hybrid
Static, and Dynamic Analysis Approach" by conducted
research related to Android security testing with the
Automated Vulnerability Detection Technique. The test
results conclude that the shorter trial period of published apps
can make apps more vulnerable to malicious users and
hackers who can gain unauthorized access to personal data.
They then propose a framework for Android vulnerability
detection that can be used by developers and ordinary users.
The web application is designed to be easy to use. The
framework analyzes uploaded APK files using two methods:
static analysis and dynamic analysis and generates analysis
reports. The types of vulnerabilities found in the project were
information leaks, intent crashes, insecure network requests
(HTTP requests), exported Android components, enabled
backup mode, and enabled debugging mode. The framework
is available at https://github.com/AmrAshra.

The third one is research conducted by P.A. Bhat and K.
Dutta in 2019 with the research title "A survey on various
threats and current state of security in Android platform"
examined attacks on various layers of the Android system.
Researchers and software developers hope to formulate
strategies for detecting and preventing attacks. This article
conducts comprehensive research on the state of Android
security domains. This research investigated various threats
and security measures related to this category and conducted
an in-depth analysis of potential issues in the Android
security field. This research aims to help researchers acquire
knowledge about Android security from all aspects, and build
a more comprehensive, robust, and efficient solution to the
threats faced by Android. Although the latest Android system
now has strong security mechanisms, malware developers are

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/

IJID (International Journal on Informatics for Development), e-ISSN: 2549-7448

Vol. 10, No. 2, 2021, Pp. 102-111

This article is distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

See for details: https://creativecommons.org/licenses/by-nc-nd/4.0/

104

discovering new techniques to bypass system security
policies. Most malicious applications are designed to gain
root access to the system. Malware developers are built so
well that they are difficult to detect, and they continue to work
silently; users do not know that malware has compromised
their system. An important conclusion of this research is that
lack of understanding of the use of security protocols and
poor developer practices are the main reasons why Android
faces security threats. The research can help researchers
acquire knowledge in the Android security field from all
aspects, and build a more comprehensive, robust, and
efficient solution to the threats faced by Android.

The fourth one is research conducted by J. Wu and M.
Yang in 2017 with the research title "LaChouTi: Kernel
vulnerability responding framework for the fragmented
Android devices" researched fragmentation in the Android
ecosystem. They respond to kernel vulnerabilities in
fragmented devices. In particular, they also proposed and
implemented LaChouTi which is an automated kernel
security update framework consisting of cloud services and
end application updates. LaChouTi tracks and identifies
security vulnerabilities based on CVEPatch for the target
Android kernel then generates a differential binary patch for
the specified result and is finally applied to the patch on the
kernel. Subsequently implemented LaChouTi on new
commercial devices in collaboration with four internationally
renowned manufacturers. The results show that LaChouTi is
effective for manufacturer security updates.

The fifth is research conducted by R.D. Putra and I.
Mardianto in 2019 with the research title “Exploitation with
Reverse_tcp Method on Android Device using Metasploit”
researched Android security by testing with the exploitation
method. They say that Android uses a kernel-level sandbox
and isolation mechanism to separate apps from each other and
control communication between apps or access to resources.
The motivation of this research is to determine the
characteristics of the exploit based on the reverse TCP attack
method on Android devices and to determine the time
variable required for the payload to enter the system from the
target. The contribution of this research is to understand how
the reverse TCP method works on Android system exploit
attacks and how to avoid it. The results obtained from an
exploit attack are understanding how to perform an exploit
attack, analyzing the interaction between the attacker and the
victim, analyzing how the exploit attack works, and the time
it takes to prepare the payload using a bash script shell. All
the details of the analysis will provide conclusions and
strategies to make the Android operating system more secure.

Remote access Trojan is a malware type of trojan horse
that attackers enable to remote administrative toward the
infected target. The testing steps of remote access consists of
connecting the IP testing device by using Ghost Framework
tools, doing the exploitation, applying the command of ADB
shell, and doing the remote access [21],[22].

The first step for the testing is to connect the IP testing
device to Ghost Framework [23]. Exploitation is an activity
to plant the exploit code into the system. This step is done by
exploiting the system through ADB. ADB shell is to write a
series of commands to remote access and other activity on the
testing device [24]. The purpose of remote access on the

testing device is to understand what can be done when the
device is on remote access.

This research is conducted with the scenario of exploiting
the Android device through Android Debug Bridge (ADB).
The process of exploiting remote access on the Android
system can help us to understand how the third parties doing
the attack of remote access Trojan [19]. An exploit is a series
of commands, data, or software that exploits the vulnerability
of the target computer [20]. In short, exploit is code to attack
the aim target.

2 METHOD

2.1 Post-Exploitation

Post-exploitation refers to any actions taken after a

session is opened. A session is an open shell from a successful

exploit or brute force attack. A shell can be a standard shell

or Meterpreter [25]. Some of the actions that can take in an

open session include Collect System Information, Pivot, Run

Meterpreter Modules, and Searching the File System. Post-

Exploitation is used to determine the underlying capabilities

and values of the target system.

The Post-Exploitation process aims to be able to access

all parts of the target system without being detected by the

victim. Penetration testers are used to exploit the target

computer system without validating and analyzing the value

of the data presented on the victim's system [26]. Testers can

dig deep for more information about the target system if they

find the information useful. Penetration testers can also

analyze system configuration settings, communication

modes, registry settings, and connection methods that connect

device-specific networks. In this process, the methods and

requirements may differ depending on the situation and the

rules of cooperation.

2.2 Android

Android is a Linux-based operating system designed

primarily for touch screen mobile devices, such as

smartphones and tablets. From black and white cell phones to

the latest smartphones or minicomputers, operating systems

have changed a lot in the last 15 years. One of the most widely

used mobile operating systems today is Android. An android

is a software that was founded in Palo Alto, California in

2003. Android is made for everyone like developers,

designers, and device manufacturers. This means that many

people will be able to experiment, imagine, and create things

that have never existed in the world. The version history of

the Android OS begins with the discharge of Android 1.0 beta

in November 2007. Since April 2009, each Android version

has been developed with a code name that supported a dessert

item. These versions are released in alphabetical order:

Cupcake, Donut, Eclair, Froyo, Gingerbread, Honeycomb,

frozen dessert Sandwich, Jelly Bean, KitKat, Lollipop,

Marshmallow, Nougat, Oreo, and Pie. Since Android 10

google does not use fruit names for naming Android versions.

The latest Android version is Android 12 which was launched

in May 2021 with SDK Build-Tools version 31.

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/

IJID (International Journal on Informatics for Development), e-ISSN: 2549-7448

Vol. 10, No. 2, 2021, Pp. 102-111

This article is distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

See for details: https://creativecommons.org/licenses/by-nc-nd/4.0/

105

The Android architecture consists of five parts as

follow:

• Linux kernel: Android uses a powerful Linux kernel

and supports a variety of hardware drivers. The kernel

is the core of the operating system. It manages the

input and output requests from the software. This

provides basic system functions, such as process

management, memory management, device

management (such as camera, keyboard, monitor,

etc.), and the kernel handles everything.

• Libraries: There is a set of libraries in the Linux kernel,

including open-source web browsers, such as the

WebKit and libc libraries. The library is used to play

and record audio and video. SQLite is a useful

database for storing and sharing application data. The

SSL library is responsible for Internet security, etc.

• Android Runtime: The android runtime provides a key

component called the Dalvik virtual machine, which is

a Java virtual machine. It is specially designed and

optimized for Android. Dalvik VM is a process virtual

machine in the Android operating system. It is

software to run applications on Android devices.

Dalvik VM uses core Linux functions, such as

memory management and multithreading in the Java

language. Dalvik VM allows each Android application

to run its process. Dalvik VM executes files index

format.

• Application Framework: The application framework

layer provides many advanced services for

applications, such as window manager, display

system, package manager, resource manager, etc.

Allow app developers to use this service in their apps.

• Applications: All android apps can be found at the top

level and write your apps and install them at that level.

Examples of such applications include contacts,

books, browsers, services, etc. Each application plays

a different role in the application.

2.3 Ghost Framework Application

Ghost Framework is an Android post-exploitation

framework that uses the Android Debug Bridge to remotely

access an Android device. By using this Framework tool, we

can control Android devices. We can use this framework to

control old Android devices with the debug bridge turned on

in "Developer Options". Now, this becomes very harmful

because the attacker gains full administrative control of the

vulnerable Android device. If you forget the password of the

remote Android device, you can use the Ghost framework to

delete it. It can also be used to access the shell of a remote

Android device without using OpenSSH or other protocols.

Using the ghost framework, we can perform various

activities, such as viewing device activity information,

viewing device network information, clicking the specified

screen device, clicking the specified x-axis and y-axis,

controlling the device keyboard, pressing/simulating keys on

the target device, and opening the URL on the device, Open

the device shell and restart the device.

2.4 Tools and Software Testing

The tools and software used to exploit Remote Access

testing devices via the Android Debug Bridge can be seen in

Table 1.

Table 1. Tools and Software Testing

No. Tools &

Software

Version Function

1. Laptop MSI-GF639SCSR Test
Equipment

2. Smartphone 1 Xiaomi Redmi

Note 5 Android 9
& Android 12

(AOSP)

Test

Equipment

3. Smartphone 2 Xiaomi Redmi 5

plus Android 8.1

(MIUI)

Test

Equipment

4. Smartphone 3 Vivo Y71 Android
8.1 (FuntouchOS)

Test
Equipment

5. Kali Linux 21.1 Operating

System

6. Ghost

Framework

6.0 Exploitation &

Remote Access

Tools and software as listed in Table 1 are needed for

the exploitation so that remote access can be done through

ADB. The tools and software that are used consist of Laptop

MSI-GF639SCSR, Xiaomi Redmi Note 5 brand smartphone

with Android 9 & Android 12 (AOSP) version, Xiaomi

Redmi 5 Plus brand smartphone with Android 8.1 version,

Vivo Y71 brand Smartphone with Android 8.1 version, and

Kali Linux 21.1 as operating system [18]. The Ghost

Framework is a tool to do the exploitation process for remote

access devices.

2.5 Scenario Attack

This section provides an overview of the Attack

scenario on an Android smartphone. Smartphones act as

targets for attacks. The following is an overview of the attack

process as shown in Figure 1.

Figure 1. An attack scenario against the target

Figure 1 provides information on the attack scenario

which consists of three main stages. The first stage is the

exploitation process which is marked with a blue arrow, if the

process is successful, there will be feedback to the attacker so

that they can proceed to the next stage. The second stage is

the post-exploitation process which is marked with an orange

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/

IJID (International Journal on Informatics for Development), e-ISSN: 2549-7448

Vol. 10, No. 2, 2021, Pp. 102-111

This article is distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

See for details: https://creativecommons.org/licenses/by-nc-nd/4.0/

106

arrow. The third stage is an attempt to obtain access rights to

control the victim's smartphone as shown in the green arrow.

2.6 Attack Process

In the attack section, the process functions to determine

the extent of threats that can occur because mobile

applications for data resource sharing services are still not

ready to receive malware attacks. Malware attacks can

covertly take over a mobile device and use it for nefarious

purposes ranging from stealing data and spying on its users.

Therefore, to avoid the worst possible scenario, testing is

carried out through an attack process on mobile devices with

the Ghost Framework. The following are the stages of attack

in this study which consist of six stages as shown in Figure 2.

Figure 2. A flowchart of an attack process

The flow of the testing system can be seen in Figure 2 with

described as follow:

• Testing devices that have been confirmed to be

connected to Kali Linux using the ADB

• Check whether the device is connected or not by

opening the Ghost Framework.

• Set the IP RHOST obtained from the device under test

• Perform the command "run"

• If already connected, the device can be remotely

accessed and given the ADB shell command.

2.7 Connecting Device

The Android testing device will be connected to the
software testing. There are many steps of connecting which
are a connection to Kali Linux and Connect IP & PORT
Device to Ghost Framework.

2.7.1 Connection to Kali Linux

The Android device will be connected to Linux through

ADB. Before testing device must turn on the USB mode

debugging. Next is connected using the USB cable to Linux.

The status of the device that is successfully connected can be

seen in Figure 3 Android device code 596edc9e is connected

with the ADB server this time Linux command “ADB

devices”.

Figure 3. ADB devises interface

2.7.2 Connect IP & PORT Device to Ghost Framework

The Android device successfully connected through

ADB will be connected using IP and port ADB on the

Android device itself. The process of connecting to Android

with Ghost Framework can be seen in Figures 4, 5, and 6.

Figure 4. The IP address of a smartphone

The IP on the testing device is 192.168.100.253 (Figure

4), then the IP will be connected to Ghost Framework. In

Figure 5, before connecting to the IP ADB, on terminal Ghost

Framework first perform the command "set RHOST IP". The

IP of the device being tested is 192.168.100.253 so that the

command written is "set RHOST 192.168.100.253". It can be

seen in Figure 6, after setting up RHOST, to connect to the

Ghost Framework just only do the "run" command.

After performing the command, see whether the device

being tested is connected or not. There will be a statement

saying failed to connect to <IP>. In the first experiment, the

tested device failed to connect with the description "[-] Failed

to connect to 192.168.100.253:5555!". Conversely, if

successfully connected, see ghost information (IP: PORT)

with the description "ghost (192.168.100.253:5555)>".List

Command Tools.

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/

IJID (International Journal on Informatics for Development), e-ISSN: 2549-7448

Vol. 10, No. 2, 2021, Pp. 102-111

This article is distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

See for details: https://creativecommons.org/licenses/by-nc-nd/4.0/

107

Figure 5. SET RHOST IP address

Figure 6. Connecting to IP address ADB

Many commands can be run on the Ghost Framework to

remote access. The device shell command can be seen in

Table 2. After the testing device is connected to the Ghost

Framework accordingly remote access and also various kinds

of commands on Android can be performed. Some activities

that can be done by remote access to the testing device after

connecting to the Ghost Framework include accessing system

information, entering the system/data directory, changing

system contents, accessing the ADB shell, opening the URL,

etc.

Table 2. A List of Commands

Command Description

Clear Clear terminal window

Activity Show device activity information

Netstat Show device network information
Sysinfo Show device system information

Wifi Control device wifi services
Openurl Open URL on the device

Screen Control device screen

Screenshot Take device screen shoot
Shell Open device shell

Upload Upload local file

Click x,y Clicks the specified x and y-axis

2.7.3 Access to System Information

Remote access makes the device accessible to the

system. Some of the commands can be done as shown in

Figures 7 and 8. By using the sysinfo command in Figure 6,

system information will appear which are Operating System

Android, Computer Username whyred with the codename for

the Xiaomi Redmi Note 5 AI, the Release Version is the

Android version which is version 9, as well as information on

the Processor Architecture, namely arm64-v8a.

Figure 7. A sysInfo display

Figure 8. A device shell for removing a file

In Figure 8 with the command shell, we can access, add,

and delete contents of the system. Some many activities can

be done such as deleting the lock screen database or removing

the lock screen security.

2.7.4 Access URL

Remote access devices can access the URL using a

browser without opening the lock screen. As an example in

Figure 9, using the openurl command will make an intent to

the browser to access the destination website.

Figure 9. An Openurl display

In figure 9 the test is done by writing the command "openurl

mti.uad.ac.id" and automatically Ghost Framework will start

the data view intent to the address http://mti.uad.ac.id/.

3 RESULT AND DISCUSSION

3.1 Attack Analysis

Based on the tests that have been carried out, the test

device on Android 9.0 was successfully remote access. Some

of the commands that can be done can be seen in Table 3.

Some information is obtained and allows to enter and change

the contents of the system directory. The testing device can

be remotely accessed from the computer to carry out the test

like an authorized user.

Table 3. A List of Activities of Android 9.0

Activity Result Description

Connect to Device True Connecting IP device to Ghost

Framework
Access system info True Obtain system information

Access battery info True Obtain test battery information

Access the system

directory

True Enter the system directory &

change the contents of the system

Access the website True Open URL

Screenshot device True Take screenshot

Remote device True Remote access device

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
http://mti.uad.ac.id/

IJID (International Journal on Informatics for Development), e-ISSN: 2549-7448

Vol. 10, No. 2, 2021, Pp. 102-111

This article is distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

See for details: https://creativecommons.org/licenses/by-nc-nd/4.0/

108

In Table 3, the test device on Android 9.0 is successfully

connected using the IP device to the Ghost Framework. Once

connected, a session will open which allows the tester to post-

exploitation. There are various kinds of information obtained

including system information on the device used, battery

information, entering and changing content in the system,

accessing URLs, getting a screenshot, and remotely accessing

targets.

3.1.1 Test Results on Xiaomi Redmi 5 Plus Android 8.1

It can be seen on the Android 9.0 AOSP version that the

exploitation and post-exploitation process was successfully

carried out without any problems. However, in the tests

carried out on android 8.1, the exploitation process failed

because the device IP could not connect to the Ghost

Framework. For more details, see Figures 10 and 11.

Figure 10. Properties of Xiaomi Redmi 5 Plus

Figure 10 shows a description of the Xiaomi Redmi 5 Plus

device that uses MIUI 11.2 with the Android 8.1 version.

Figure 11. IP Address Xiaomi Redmi 5 Plus

Figure 11 shows a description of the IP Address of the

device that will be connected to the Ghost Framework. The

connection process for this device can be seen in Figure 12.

Figure 12. Connecting to IP address ADB on Xiaomi Redmi 5 Plus

It can be seen in Figure 12 that the IP Address connection

process between the Xiaomi Redmi 5 Plus failed.

3.1.2 Test Results on Vivo Y71 Android 8.1

In Android Vivo Y71 Android 8.1 the exploitation

process failed because the device IP could not connect to the

Ghost Framework. For more details, see Figures 13 and 14.

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/

IJID (International Journal on Informatics for Development), e-ISSN: 2549-7448

Vol. 10, No. 2, 2021, Pp. 102-111

This article is distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

See for details: https://creativecommons.org/licenses/by-nc-nd/4.0/

109

Figure 13. Properties of Vivo Y71

Figure 13 shows a description of the Vivo Y71 device

that uses FuntouchOS with the Android 8.1 version. The last

security patch update was updated in March 2021.

Figure 14. IP Address Vivo Y71

Figure 14 shows a description of the IP Address of the device

that will be connected to the Ghost Framework. The

connection process for this device can be seen in Figure 15.

It can be seen in Figure 15 that the IP Address

connection process between Vivo Y71 Plus failed because the

device vendor disabled the wireless debugging process. This

causes this device to be unable to exploit and remotely access.

Figure 15. Connecting to IP address ADB on Vivo Y71

3.1.3 Test Results on Android 12

In Android 12, the exploitation process failed because

the device IP could not connect to the Ghost Framework. For

more details, see Figures 16 and 17.

Figure 16. Connecting to IP address ADB on AOSP Android 12

In Figure 16, it can be seen that the IP on the Android

12 device failed to connect to the Ghost Framework in the

exploitation process. This causes the session to not open so it

can't post-exploitation.

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/

IJID (International Journal on Informatics for Development), e-ISSN: 2549-7448

Vol. 10, No. 2, 2021, Pp. 102-111

This article is distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

See for details: https://creativecommons.org/licenses/by-nc-nd/4.0/

110

Figure 17. IP address & version of Android

Figure 17 shows a screenshot of the phone on Android

12. The blue color shows the Android version used, namely

Android 12. The red color shows the IP Address of the device

that will be used to connect to the Ghost Framework. Next,

the yellow color indicates the MAC Address of the device.

As a comparison, the test results on Android 12 can be

seen in Table 4.

Table 4. List of Activities Android 12.0

Activity Result Description

Connect to Device False Connecting IP device to Ghost

Framework
Access system info False Obtain system information

Access battery info False Obtain test battery information

Access the system

directory

False Enter the system directory

Change the contents of the system

Access the website False Open URL

Screen shoot

Device

False Take Screenshot

It can be seen in Table 4 that the connection process

between the test device and the Ghost Framework did not

work because Android 12 by default blocks wireless

debugging processes therefore the session does not open and

causes the post-exploitation process to fail. Remote access

trojan which is the purpose of the research cannot be done

through ADB on Android 12 because smartphone vendors

lock the wireless debugging process on their devices.

3.2 Test Comparison Table

A comparison of the results of tests carried out on three

devices can be seen in Table 5.

Table 5. A Comparison of Test Device Results

Activity

Redmi Note

5 Android 9

(AOSP)

Redmi

Note 5

Android

12

(AOSP)

Redmi 5

Plus

Android

8.1

(MIUI)

Vivo Y71

Android

8.1

(Funtouch

OS)

Connect to

Device

True False False False

Access

system info

True False False False

Access

battery info

True False False False

Access the

system

directory

True False False False

Access the

website

True False False False

Screen shoot

Device

True False False False

Remote

device

True False False False

It can be seen in Table 5 that the exploitation and post-

exploitation process was successfully carried out on the

Xiaomi Redmi Note 5 Android 9 Based AOSP ROM. Other

devices cannot be successfully connected to Ghost

Framework and cannot be exploited because device vendors

and MIUI & FuntouchOS based ROMs by default block

access to wireless debugging.

4 CONCLUSION

This research succeeded in showing that the test device

with the Android 9.0 version and using the AOSP ROM has

a hole in ADB which makes the device vulnerable to attack

by Remote Access Trojan. The use of commands in the Ghost

Framework and ADB shell commands allows third parties to

perform activities on the device such as opening the lock

screen, entering system directories, and changing systems

that have been exploited. Therefore, anticipation and patching

of these holes are necessary for security purposes. However,

on devices using MIUI with the Android 8.1 version and

devices using FuntouchOS with 8.1 version, exploitation and

post-exploitation cannot also be done because smartphone

vendors by default block wireless debug access. It is hoped

that this research can be a reference for future mobile security

research.

AUTHOR’S CONTRIBUTION

Conducting a literature study of previous research,

system design, data collection, analysis and interpretation.

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/

IJID (International Journal on Informatics for Development), e-ISSN: 2549-7448

Vol. 10, No. 2, 2021, Pp. 102-111

This article is distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

See for details: https://creativecommons.org/licenses/by-nc-nd/4.0/

111

COMPETING INTERESTS

This paper is my original work. made as a requirement

to complete a master's study in informatics engineering.

ACKNOWLEDGMENT

Thanks to Universitas Ahmad Dahlan Yogyakarta for

the support and facilitation of this research.

REFERENCES

[1] N. A. Handoyono and R. Rabiman, “Development of android-

based learning application in EFI materials for vocational schools,”
in Journal of Physics: Conference Series, Feb. 2020, vol. 1456, no.

1, p. 12050, DOI: 10.1088/1742-6596/1456/1/012050.

[2] R. Mayrhofer, J. Vander Stoep, C. Brubaker, and N. Kralevich,
“The Android Platform Security Model,” ACM Trans. Priv. Secur.,

vol. 24, no. 3, 2021, doi: 10.1145/3448609.

[3] S. O’Dea, “Number of smartphone users worldwide from 2016 to
2023,” statista.com, 2021.

https://www.statista.com/statistics/330695/number-of-

smartphone-users-worldwide/ (accessed Apr. 29, 2021).
[4] R. Singh, “An Overview of Android Operating System and Its

Security Features,” Eng. Res. Appl., vol. 4, no. 2, pp. 519–521,
2014.

[5] A. Sarkar, A. Goyal, D. Hicks, D. Sarkar, and S. Hazra, “Android

Application Development: A Brief Overview of Android Platforms
and Evolution of Security Systems,” Proc. 3rd Int. Conf. I-SMAC

IoT Soc. Mobile, Anal. Cloud, I-SMAC 2019, pp. 73–79, 2019,

DOI: 10.1109/I-SMAC47947.2019.9032440.
[6] “Android Open Source Project.” https://source.android.com/

(accessed Apr. 30, 2021).

[7] R. D. Putra and I. Mardianto, “Exploitation with Reverse_tcp
Method on Android Device using Metasploit,” J. Edukasi dan

Penelit. Inform., vol. 5, no. 1, p. 106, 2019, doi:

10.26418/jp.v5i1.26893.
[8] A. Amin, A. Eldessouki, M. T. Magdy, N. Abdeen, H. Hindy, and

I. Hegazy, “AndroShield: Automated Android Applications

Vulnerability Detection, a Hybrid Static and Dynamic Analysis
Approach,” Information, vol. 10, no. 10, p. 326, 2019, DOI:

10.3390/info10100326.

[9] P. Bhat and K. Dutta, “A survey on various threats and current state
of security in android platform,” ACM Comput. Surv., vol. 52, no.

1, 2019, DOI: 10.1145/3301285.

[10] A. Iswardani and I. Riadi, “Denial of service log analysis using
density K-means method,” J. Theor. Appl. Inf. Technol., vol. 83,

no. 2, pp. 299–302, 2016.

[11] T. Kinnunen et al., “The ASVspoof 2017 challenge: Assessing the
limits of replay spoofing attack detection,” Proc. Annu. Conf. Int.

Speech Commun. Assoc. INTERSPEECH, vol. 2017-August, pp.

2–6, 2017, DOI: 10.21437/Interspeech.2017-1111.
[12] D. Kiwia, A. Dehghantanha, K. K. R. Choo, and J. Slaughter, “A

cyber kill chain based taxonomy of banking Trojans for

evolutionary computational intelligence,” J. Comput. Sci., vol. 27,

pp. 394–409, 2018, DOI: 10.1016/j.jocs.2017.10.020.

[13] “Android Security Bulletins | Android Open Source Project.”
https://source.android.com/security/bulletin (accessed Apr. 30,

2021).

[14] “How Monthly Android Security Patch Updates Work.”
https://www.xda-developers.com/how-android-security-patch-

updates-work/ (accessed May 03, 2021).

[15] J. Wu and M. Yang, “LaChouTi: Kernel vulnerability responding
framework for the fragmented android devices,” Proc. ACM

SIGSOFT Symp. Found. Softw. Eng., vol. Part F1301, pp. 920–925,

2017, DOI: 10.1145/3106237.3117768.
[16] A. Shanley and M. N. Johnstone, “Selection of penetration testing

methodologies: A comparison and evaluation,” Aust. Inf. Secur.

Manag. Conf. AISM 2015, vol. 2015, pp. 65–72, 2015, DOI:
10.4225/75/57b69c4ed938d.

[17] A. Susanto and W. K. Raharja, “Simulation and Analysis of

Network Security Performance Using Attack Vector Method for
Public Wifi Communication,” Int. J. Informatics Comput. Sci., vol.

5, no. 1, pp. 7–15, Mar. 2021, DOI: 10.30865/ijics.v5i1.2764.

[18] H. Lu, X. Helu, C. Jin, Y. Sun, M. Zhang, and Z. Tian, “Salaxy:
Enabling USB Debugging Mode Automatically to Control

Android Devices,” IEEE Access, vol. 7, pp. 178321–178330, 2019,

DOI: 10.1109/ACCESS.2019.2958837.
[19] C. Guo, Z. Song, Y. Ping, G. Shen, Y. Cui, and C. Jiang, “PRATD:

A Phased Remote Access Trojan Detection Method with Double-

Sided Features,” Electronics, vol. 9, no. 11, p. 1894, Nov. 2020,
DOI: 10.3390/electronics9111894.

[20] “exploit - Definition.”

https://www.trendmicro.com/vinfo/us/security/definition/exploit
(accessed May 04, 2021).

[21] D. Jiang and K. Omote, “An approach to detect remote access

trojan in the early stage of communication,” in Proceedings -
International Conference on Advanced Information Networking

and Applications, AINA, Apr. 2015, vol. 2015-April, pp. 706–713,

DOI: 10.1109/AINA.2015.257.
[22] I. M. M. Matin and B. Rahardjo, “Malware Detection Using

Honeypot and Machine Learning,” Nov. 2019, DOI:

10.1109/CITSM47753.2019.8965419.
[23] R. N. Manda Vy and H. Z. T. R. Zafimarina Stefana, “Bridge

implementation between IP network and GSM network,” 2013

World Congr. Comput. Inf. Technol. WCCIT 2013, vol. 4, no. 2,
pp. 69–74, 2013, DOI: 10.1109/WCCIT.2013.6618671.

[24] “ADB Shell Commands List and Cheat Sheet.”

https://technastic.com/adb-shell-commands-list/ (accessed Apr.
30, 2021).

[25] “About Post-Exploitation | Metasploit Documentation.”

https://docs.rapid7.com/metasploit/about-post-exploitation/
(accessed Nov. 08, 2021).

[26] R. Umar, I. Riadi, and R. S. Kusuma, “Analysis of Conti
Ransomware Attack on Computer Network with Live Forensic

Method,” IJID (International J. Informatics Dev., vol. 10, no. 1,

pp. 53–61, 2021, DOI: 10.14421/ijid.2021.2423.

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/

