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Abstract— Diabetes affects about 1.9% of the global population, mainly through Type 2 diabetes. Machine learning (ML) serves a 

pivotal role in enhancing diabetes prediction by analyzing complex datasets. Feature selection, a crucial ML pre-processing step, 

improved prediction accuracy by identifying relevant data and discarding irrelevant features. This study investigates the combination 

of metaheuristic algorithms and ML techniques to enhance diabetes prediction accuracy and computational efficiency. Utilizing the 

PIMA, Early Stage, and Vanderbilt datasets, experiments evaluated ten algorithm-model combinations based on metrics like 

accuracy, precision, the Wilcoxon test, and convergence curves. Key findings included that Firefly Algorithm-Logistic Regression, 

Bat Algorithm-Logistic Regression, and Cuckoo Search-Logistic Regression achieved 74.72% accuracy on PIMA; Firefly Algorithm-

Support Vector Machine and Cuckoo Search-Naïve Bayes achieved 83.39% accuracy and 96.15% precision on Early Stage; and 

Firefly Algorithm-Naïve Bayes achieved 92.88% accuracy and precision on Vanderbilt. These results highlighted the potential of 

integrating metaheuristics with ML methods to improve clinical diagnostics. Future research is recommended to validate algorithm 

robustness across diverse datasets to further optimize diabetes prediction strategies.  

Keywords—complex_dataset; diabetes_prediction; disease_detection; feature_selection; prediction_accuracy



                                              IJID (International Journal on Informatics for Development), e-ISSN: 2549-7448 

Vol. 15, No. 1, June 2026, Pp.672-682 

 
This article is distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License. 

See for details: https://creativecommons.org/licenses/by-nc-nd/4.0/ 
673 

 

1 INTRODUCTION  

Diabetes is a condition where blood sugar levels are not 
controlled in the body, leading to increased blood glucose 
levels, often referred to as hyperglycemia [1]. Diabetes is a 
severe health issue that affects many people globally, 
including in Indonesia. The International Diabetes Federation 
(IDF) reports that diabetes prevalence in the world is 1.9%, 
with Type 2 diabetes being the most prevalent, accounting for 
95% of the global population. In Indonesia, Type 1 diabetes 
cases reached 41,8 million in 2022, making it the country with 
the highest prevalence of Type 1 diabetes in ASEAN and the 
third-highest prevalence among 204 countries globally [2].  In 
an era of rapid technological development, by 2023, various 
human jobs will be more accessible. According to Michael 
Chui in [3], there are many emerging technology trends, such 
as next-generation software engineering and the application of 
Artificial Intelligence in various industries, including the 
medical sector. Health services are an essential pillar of a 
healthy society, so applying AI and computational methods in 
healthcare systems is necessary to create healthier societies 
and reduce the risk of disease in future generations. It will 
improve the quality of life and introduce the concept of 
"telemedicine" [4].  

Currently, healthcare professionals conduct medical 
examinations to predict the risk of developing diabetes. The 
data collected from the evolving diagnostic technology is 
beneficial for the diagnosis and treatment of diseases. 
However, doctors often find it difficult to quickly organize and 
analyze this data. Therefore, ML is increasingly used in the 
medical field to help doctors predict diseases and determine 
the outcome of their treatment [5]. ML is a technique that 
imitates human behaviour by learning from data and is highly 
effective in completing certain tasks [6]. Classification and 
prediction are two of the many tasks that ML can do in 
problem-solving. Classification sets the same pattern for a 
given class or target. ML classification is also used to predict 
disease through data that serves as a predictor and target to 
determine whether a person suffers from diabetes [7]. 

Feature selection is one of the classification pre-processing 
techniques commonly used in ML and Statistics to improve 
learning performance and solve problems with high-
dimensional data. In high-dimensional data, feature selection 
is employed to select a relevant subset of features and remove 
redundant, excessive, and undesirable features prior to 
developing a classification model. [8]. Redundant features or 
attributes are removed because they do not contribute well as 
predictors to the learning model. After all, the information 
they provide has been presented or represented by other 
features. [9]. In addition, irrelevant features negatively affect 
the accuracy of the classification results and add to the 
difficulty of finding useful information in the data. [10]. 

Feature selection is divided into three methods: Filter, 
Wrapper, and Embedded. Filter methods are simple 
techniques that do not rely on ML algorithms and always focus 
on data characteristics. [11]. In contrast to the Filter method, 
the Wrapper method combines metaheuristic algorithms with 
ML algorithms to obtain the best features and gives better 
results than the Filter method. [11]. This approach uses a 
modeling algorithm that generates and evaluates each subset. 
The generated subset in Wrapper techniques is derived from 

various search algorithms. [12]. Meanwhile, the Embedded 
method efficiently selects features and performs well in the 
training process [5]. The hierarchy of feature selection 
algorithms can be seen in Fig. 1. 

Research into the prediction of diabetes using a 
combination of metaheuristic algorithms is widely used and 
continuously developed to contribute to methods to detect 
diabetes quickly and achieve better performance efficiency. 
Herlambang et. al. in  [13]  obtained an accuracy performance 
of 74.67% using the pure XGBoost model ML. Subsequently, 
Astuti et al. [14] used the BWOA algorithm in combination 
with K-Nearest Neighbor, Naïve Bayes, Random Forest, 
Logistic Regression, Decision Tree, and Neural Network and 
achieved the best accuracy on BWOA-NB of 76%. 
Furthermore, Shankar et al. in [15] conducted experiments 
with the Ant Colony Optimization algorithm, obtaining an 
accuracy of 71%, and compared with the Grey Wolf 
Optimization algorithm with an accuracy of 81.15%.  

Various studies have utilized several algorithmic 
approaches in combining metaheuristic and machine learning 
algorithms. Although these studies highlight the potential of 
such combinations in improving classification performance, 
they often focus on a single pairing of metaheuristic and 
machine learning algorithms without conducting a 
comparative analysis across multiple combinations. 
Moreover, limited research has been conducted in the context 
of diabetes prediction using a comprehensive evaluation of 
different metaheuristic-based feature selection methods 
integrated with various classifiers. Therefore, this study aims 
to fill this gap by performing a comparative analysis of 
different metaheuristic and machine learning algorithm 
combinations to identify the most effective pairing for 
diabetes disease classification. 

 

2 METHOD 

The flowchart delineates a feature selection process 
employing metaheuristic algorithms, shown in Fig. 2. The 
general phase of the flowchart is dataset acquisition (PIMA, 
Early Stage, and Vanderbilt), followed by dataset 
preprocessing, and then proceeds to feature selection with ten 
metaheuristic algorithms. The next phase after the feature 
selection is ML modeling which uses five ML algorithms. The 
last is model evaluation. 

 

2.1 Dataset 

This study uses three diabetes datasets with binary labels 

(diabetes or non-diabetes) for classification. Based on Table 

1, the first dataset is the Pima Indians Diabetes Dataset 

(PIMA or PIDD), which is publicly available through the UCI 

Machine Learning Repository. It comprises 768 records and 

8 numerical attributes related to diagnostic measurements of 

Pima Indian women aged 21 and older. The second dataset is 

the Early-stage Diabetes Risk Prediction Dataset, obtained 

from Kaggle, which contains 520 samples and 16 attributes 

capturing various symptoms and risk factors such as polyuria, 

polydipsia, and sudden weight loss. The third dataset is 

initially developed by the Biostatistics Program at Vanderbilt 
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University. The data was gathered through a survey involving 

several hundred rural African-American patients, focusing on 

various diagnostic parameters. 

The three datasets are open and public datasets and are 

often used in research experiments. The inclusion of these 

three datasets ensures that the proposed approach is tested on 

data with varying characteristics, enhancing the 

generalizability and robustness of the study findings. Each 

dataset was split into training, validation, and testing sets in 

the following proportions: 80% training, and 20% testing. 
 

2.2 Dataset Preprocessing 

Data pre-processing is a crucial step to optimize model 
performance. Fig. 3 shows the process of pre-processing data 
in this research.  

Data pre-processing begins with data cleaning for the 
PIMA, Early Stage, and Vanderbilt datasets. At this stage, 
outlier handling is carried out to ensure the absence of outlier 
data and that the data is normally distributed using the 
Interquartile Range (IQR). Furthermore, in the dataset, 
missing value handling is also carried out by filling the value 
using the Median if the data is not evenly distributed (there is 
skewness) and using the Mean when the data is normally 
distributed. The last cleaning stage is to perform data encoding 
and transformation of string data to numeric. After performing 
the data cleaning process, the resulting data features are then 
moved on to the feature selection stage using the wrapper 
method. Ten metaheuristic algorithms are used for feature 
selection, and the KNN algorithm aims to evaluate the 
performance of the selected feature subset in terms of 
predictive ability, which is then used to inform the objective 
function that aims to select the optimal features. After 
selecting the best features, they are then substituted into the 
ML algorithm as a combination of metaheuristics, and finally, 
the algorithm is evaluated for performance. 

 

 

Figure 1. The hierarchy of feature selection algorithms [11] 

 
Table 1. Dataset Description 

Dataset Feature Instance Source 

PIMA 9 768 [16] 

Early Stage 16 520 [17] 

Vanderbilt 16 390 [18] 

  

 

Figure 2. Research flowchart 

 

 

Figure 3. Data pre-processing phase 

 

2.3 Feature Selection Using Metaheuristic Algorithm 

Feature selection is a technique that identifies a subset of 
input features to improve or maintain classification accuracy. 
It can be categorized into filter and wrapper approaches. Filter 
methods rely on statistical, information theory, distance 
measurements, and intrinsic data characteristics to evaluate 
features. In contrast, wrapper methods evaluate the best 
combination of features by optimizing classification 
performance using a specific learning algorithm [19]. While 
filter methods are more general and do not involve a specific 
learning algorithm, wrapper methods can always achieve 
better classification results, making them a primary focus of 
research in feature selection. Metaheuristic algorithms are a 
type of wrapper method used for optimization and feature 
selection problems. They are derivative-free techniques that 
start by generating random solutions and do not require 
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calculating the derivative of the search space, unlike gradient 
search techniques. These algorithms are characterized by their 
simplicity, flexibility, and ability to avoid local optima. Thus, 
this study focuses on wrapper feature selection. 

This study employs ten different metaheuristic 

algorithms. These algorithms were selected based on their 

popularity, diversity, and proven effectiveness in solving 

high-dimensional optimization problems. Each algorithm 

offers a unique strategy inspired by biological, physical, or 

social processes, providing a broad spectrum of exploration 

and exploitation behaviours in the search space. Using a wide 

variety of algorithms enables a comprehensive evaluation of 

how different feature selection strategies affect classification 

performance in diabetes datasets, where the presence of 

irrelevant or redundant features can reduce model accuracy 

and interpretability.  

After selecting the most relevant features using each 

metaheuristic algorithm, five classification algorithms, such as 

Support Vector Machine (SVM), k-Nearest Neighbors (k-

NN), Random Forest (RF), Naïve Bayes (NB), and Decision 

Tree (DT), are used individually. Each classifier is applied to 

the feature set chosen by one metaheuristic algorithm. This 

approach ensures a clear and systematic assessment of how 

well each combination of feature selection and classification 

performs. The decision to evaluate classifiers separately rather 

than combining multiple feature selection techniques or 

classifiers was made to isolate the impact of each method. 

Using them together could obscure the contribution of 

individual algorithms and introduce complexity without clear 

interpretive benefits. This separation provides more precise 

insights into which metaheuristic–classifier pairings are most 

effective for diabetes classification across different datasets. 

2.3.1 Firefly Algorithm (FA): The standard FA algorithm 

generates new solutions based on attractiveness, 

where fireflies move towards more attractive, 

brighter fireflies. This movement is determined by a 

randomization parameter α, which controls the 

randomness of the attraction. The movement is 

oriented toward the optimal solution, and the 

distance traveled is affected by the intensity of the 

flash-lighting [20]. 

2.3.2 Flower Pollination Algorithm (FPA): The FPA is a 

nature-inspired algorithm that simulates the 

fundamental pollination behaviour of flowers. Four 

rules are conceptualized in an idealized manner. The 

first rule of global pollination involves the 

interaction of living organisms and the transfer of 

pollen through cross-pollination, facilitated by a 

pollinating agent that follows a Lévy flight pattern. 

Rule 2 mandates the occurrence of abiotic and self-

pollination to facilitate local pollination. Rule 3 

states that the floral constant represents the 

likelihood of reproduction, which is directly related 

to the similarity between two flowers. Rule 4 

pertains to the exchange probability, denoted as p, 

which ranges from 0 to 1. This probability can be 

influenced by external factors, such as wind, that 

affect the transfer of pollen between local and global 

populations. Indigenous pollination contributed 

significantly to the overall pollination activity [21].  

2.3.3 Salp Swarm Algorithm (SSA): SSA is a randomized 

population-based algorithm that replicates the 

swarming behaviour of salps during their search for 

food in the water. Salps typically form a collective 

group called a salp chain in turbulent seas. In the 

SSA algorithm, the leader is the salp located at the 

front of the chain, while the remaining salps are 

referred to as followers. Similar to previous swarm-

based methods, the location of salps is determined 

within an s-dimensional search space, where s 

represents the number of variables in a given 

problem [22].  

2.3.4 Jaya Algorithm (JA): The Jaya optimization 

algorithm is utilized to address issues related to 

properly tuning algorithm-specific parameters, 

which are crucial for optimizing solutions and 

avoiding local optima. It is particularly valuable in 

designing an optimal subset of features to enhance 

classification performance [23]. 

2.3.5 Genetic Algorithm (GA): The GA derives inspiration 

from the process of biological evolution. Mutation 

and crossover are widely employed operators in 

genetic algorithms. Mutation and crossover are 

widely employed genetic algorithm operators. 

Mutation operates on an individual solution and 

often modifies a characteristic randomly or based on 

a predetermined criterion. Crossover, however, 

employs two parent solutions to generate two 

offspring, leading to the creation of novel and 

enhanced solutions. Typically, the mathematical 

model relies on an initial population of n individuals 

represented by chromosomes. Each iteration from a 

maximum number of t epochs consists of three 

operations: reproduction, mutation, and selection. 

The fittest individuals, as determined by the fitness 

function, are considered the solution to the given 

problem after the algorithm [24].  

2.3.6 Particle Swarm Optimization (PSO): The PSO was 

initially introduced by Kennedy and Eberhart [25] as 

a method for addressing binary optimization 

challenges. In the PSO algorithm, the collective 

group of individuals is referred to as a swarm. This 

swarm consists of N particles that navigate across a 

search space with many dimensions. The particle 

symbolizes the prospective solution and traverses 

the search space to locate the optimal answer. Each 

particle autonomously seeks the global maximum or 

minimum based on its own accumulated experience 

and knowledge [26]. 

2.3.7 Bat Algorithm (BA): The BA was formulated by 

relying on inspiration from the echolocation 

behavior exhibited by bats. Within the context of 

BA, an artificial bat possesses vectors representing 
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its position, velocity, and frequency. These vectors 

are continually updated over the iterations. The 

artificial bats navigate the search space by utilizing 

location and velocity vectors within the continuous 

real domain [27].  

2.3.8 Cuckoo Search (CS): The CS algorithm is inspired 

by the obligate brood parasitism of the cuckoo, 

where it lays its eggs in the nests of smaller birds, 

such as starlings. Upon the hatching of the egg, the 

starling assumes the role of caretaker for the cuckoo 

chick, treating it as if it were its biological offspring. 

As the cuckoo chick grows larger than the other 

chicks in the nest, it dominates and displaces them, 

ultimately leading to their complete expulsion from 

the nest. Each individual in this population is 

represented by a "nest," and each "egg" in the nest 

symbolizes a potential solution. The term "cuckoo 

eggs" is used to denote new solutions that are 

introduced into the population. As suggested by 

Levy, the replacement of a better solution with a bad 

solution is proposed [28].  

2.3.9 Grey Wolf Optimization (GWO): The GWO is 

influenced by the guidance and hunting behavior 

exhibited by packs of grey wolves. In every 

population of grey wolves, there exists a reciprocal 

hierarchy that determines the dominance and 

authority. The alpha wolf, who leads the entire pack, 

is the most influential in hunting, feeding, and 

migrating. The beta wolf, being the second most 

powerful, assumes leadership in the event of the 

alpha's death or illness. Alpha and beta have greater 

influence than omega and delta. The GWO 

algorithm draws its main inspiration from this 

particular form of social intelligence [29]. 

2.3.10 Sine Cosine Algorithm (SCA): During the initial 

phase of optimization utilizing the SCA in feature 

selection, the SCA will randomly choose various 

sets of features from the original feature set to 

produce population group feature subsets. Next, the 

evaluation function is used to score each feature 

subset, and the feature subset with the highest score 

is identified as the optimal feature subset. 

Subsequently, the feature subsets that have been 

initialized are disrupted to generate new feature 

subsets with a specified number of points. 

Furthermore, an assessment function is employed to 

evaluate the score of each newly generated subset of 

features. The subset with the highest score is then 

compared to the best subset of features from the 

previous round to determine the current optimal 

subset of features. This process is repeated to acquire 

the optimal subset of features following the 

maximum number of repetitions. An essential aspect 

of the SCA feature selection process is that the 

optimization approach employed by the SCA has an 

impact on the variety of feature subsets [29].  

2.4 Machine Learning Model 

This research focuses on five ML classifiers: KNN, 
SVM, NB, DT, and LR. These models are simple and non-
parametric, making them adaptable to various data 
distributions. SVM offers high accuracy and robustness in 
high-dimensional spaces. NB is computationally efficient and 
provides a probabilistic framework, while DT is easy to 
interpret and captures non-linear relationships. LR, known for 
its simplicity and clear probabilistic outputs, is a strong 
baseline model. These algorithms balance complexity and 
usability, making them suitable for robust diabetes prediction 
and insights into risk factors [30] [31]. 

2.4.1 K-Nearest Neighbors (KNN): The KNN technique is 

a classification approach that assigns data objects to 

classes based on their shortest distance. The 

selection of the optimal K value for this algorithm 

relies on the analysis of the available data. A higher 

value of K can mitigate the impact of noise on 

classification, but it can also result in more indistinct 

boundaries between different classifications. This 

approach employs an appropriate distance metric to 

categorize novel data. The value of the nearest 

neighbor distance K is computed, and the anticipated 

class label of the nearest neighbor is assigned as the 

class label of the new instance.  

2.4.2 Support Vector Machine (SVM): The origins of 

SVM can be traced back to statistical learning 

theory. As a classification task, it searches for the 

most effective decision boundary (hyperplane) that 

separates the instances of one class from another. 

The SVM is a fundamental type of supervised 

classifier that aims to maximize the margin to 

achieve optimal generalization. It effectively 

addresses the issues of overfitting and underfitting 

by utilizing different kernel functions that facilitate 

nonlinear separation [32]. 

2.4.3 Naïve Bayes (NB): The NB is a highly successful 

and efficient algorithm for inductive learning in ML 

and data mining. Despite relying on attribute 

independence, NB exhibits competitive solid 

performance in the classification process. The 

assumption of attribute independence in accurate 

data is uncommon. However, even if this 

assumption is violated, empirical investigations 

have shown that the performance of NB 

classification remains relatively high [33].  

2.4.4 Decision Tree (DT): DT is a predictive model that 

utilizes a tree or hierarchical structure. The purpose 

of decision trees is to convert data into decision trees 

and decision rules. The primary advantage is the 

ability to decompose intricate decision-making 

processes into more manageable ones, hence 

facilitating the identification of solutions to current 

issues for decision-makers [34]. 

2.4.5 Logistic Regression (LR): LR is a type of supervised 

ML classifier that calculates real-valued features 
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from the input data. It then multiplies each feature 

by a weight, adds them together, and applies a 

sigmoid function to the result to get a probability. A 

threshold is employed to determine a course of 

action [35].  

 

2.5 Model Evaluation 

The model evaluation is conducted after the integration 

of ML algorithms. The system utilizing the classification 

procedure is anticipated to classify all of the data accurately. 

The measures employed for model validation in this study are 

accuracy and precision. Accuracy refers to correctly identified 

instances of the total number of cases, whereas precision refers 

to the proportion of cases with positive outcomes. In this 

study, the dataset was split into 80% training and 20% testing 

using stratified sampling to maintain class distribution. 

Additionally, we employed k-fold cross-validation (k=5) to 

validate model performance across different splits, avoid 

overfitting and to ensure robust evaluation across cross-

validation, computing accuracy, F1-score, and precision for 

each model.   

In this analysis, the ML models use the following 

hyperparameter which were determined based on prior 

research and grid search tuning. 

- KNN: n_neighbors = 12 

- SVM: kernel=’rbf’ 

- NB: var_smoothing = 1e-09 

- DT: criterion=’entropy’, max_depth=3, 

max_leaf_nodes=5, min_samples_split =2 

- LR: C=0.0001, penalty=’L2; 

 
Table 2. Metaheuristic Algorithm’s Parameter 

Algorithms Hyperparameter Values 

FA 

ub     = 1 

lb     = 0 

thres  = 0.5 

alpha  = 1 

beta0  = 1 

gamma  = 1 

theta  = 0.97 

FPA 

ub     = 1 

lb     = 0 

thres  = 0.5 

beta   = 1.5 

P      = 0.8 

SSA 

ub    = 1 

lb    = 0 

thres = 0.5 

JA 

ub    = 1 

lb    = 0 

thres = 0.5 

GA 

ub       = 1 

lb       = 0 

thres    = 0.5 

CR       = 0.8     # crossover rate 

MR       = 0.01    # mutation rate 

PSO 
ub    = 1 

lb    = 0 

thres = 0.5 

w     = 0.9    # inertia weight 

c1    = 2      # acceleration factor 

c2    = 2      # acceleration factor 

BA 

ub     = 1 

lb     = 0 

thres  = 0.5 

fmax   = 2      # maximum frequency 

fmin   = 0      # minimum frequency 

alpha  = 0.9    # constant 

gamma  = 0.9    # constant 

A_max  = 2      # maximum loudness 

r0_max = 1      # maximum pulse rate 

CS 

ub     = 1 

lb     = 0 

thres  = 0.5 

Pa     = 0.25     # discovery rate 

alpha  = 1        # constant 

beta   = 1.5      # levy component 

GWO 

ub    = 1 

lb    = 0 

thres = 0.5 

SCA 

ub    = 1 

lb    = 0 

thres = 0.5 

alpha = 2       # constant 

 

Feature selection is a crucial step in improving model 
performance by identifying the most relevant features while 
reducing dimensionality. In this study, we employed various 
metaheuristic algorithms to optimize the selection process. 
The effectiveness of these algorithms depends on properly 
tuning their hyperparameters. Table 2 presents the 
hyperparameters used for various metaheuristic algorithms 
applied in feature selection experiments. These algorithms are 
designed to optimize the selection of relevant features by 
exploring the search space efficiently. Each algorithm 
operates within predefined upper (ub = 1) and lower (lb = 0) 
bounds, ensuring that the selected features are appropriately 
constrained. Additionally, most algorithms utilize a threshold 
(thres = 0.5) to determine feature inclusion. To evaluate the 
significance, this study utilized the Wilcoxon signed-rank test 
data validation method and the Metaheuristic Algorithm 
learning curve.  

In this work, the fitness value is utilized as the validation 
parameter for the metaheuristic algorithm. An optimal fitness 
value is characterized by its capacity to optimize algorithm 
performance while minimizing the number of features rather 
than solely relying on accuracy as a performance metric. The 
metaheuristic algorithm will undergo thirty iterations to 
evaluate its performance during the feature selection stage. 
Subsequently, the algorithm will be evaluated based on the 
average fitness value, convergence curve, and Wilcoxon 
score. A lower fitness value indicates superior algorithm 
performance. An exemplary method is characterized by rapid 
convergence and the ability to avoid becoming trapped in the 
optimal position. The convergence curve illustrates this. 
Furthermore, the Wilcoxon value can be employed with a 
significance level (α) of 0.05 to determine the statistical 
significance of performance comparisons among various 
metaheuristic algorithms. A Wilcoxon p-value greater than 
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0.05 suggests that there is no statistically significant difference 
between a specific algorithm and the other combination of 
algorithms. 

 

3 RESULT AND DISCUSSION 

3.1 Accuracy and Precision  

PIMA, Early Stage, and Vanderbilt were the three main 
datasets used to train a combination model using 
Metaheuristic and ML techniques. Table 3 shows the average 
of 30 accuracy model combinations, and Table 4 shows the 
average of 30 precision model combinations. The best 
performance of average accuracy and precision is written in 
bold. While using the PIMA dataset, the FA-LR, BA-LR, and 
CS-LR combination gets the highest average accuracy of 
74.71% compared to FPA, which only gets 73.34%, and SSA-
LR with an accuracy of 71.42. Then, the average accuracy 
value of the JA algorithm in combination with LR is 74.39%, 
which is the highest value among the other five ML algorithm 
combinations. Furthermore, GA-NB data gets an average 
accuracy of 74.06%, the best accuracy of the Genetic 
Algorithm. Next, PSO gets the best average accuracy of 
74.69% with a combination of ML Naïve Bayes Classifier 
algorithms. The BA implementation gets the average result of 
the BA-LR algorithm with an accuracy of 74.71%, the same 
as CS-LR. In the implementation of the GWO algorithm 
combination, the highest average accuracy obtained is GWO-
LR with an average of 74.01%. Finally, SCA-NB became the 
algorithm combination model with the best average accuracy 
of 74.38%. 

From Fig. 4, the SSA-SVM combination has the lowest 
value among the other ten algorithm combinations, with a 
value of 66.87%. In addition, the precision value by CS-SVM 
and SCA-SVM is the same precision value, which is 70.94%. 
Then, the top three algorithm combinations are BA-LR with 
an average precision value of 74.71%, followed by FPA-

SVM with a value of 73.34%, and FA-DT with a value of 
72.57%. Since the BA-LR combination has the highest 
average precision value on the PIMA dataset, it is the 
recommended algorithm. 

The comparison of the best-performing algorithm using 
the Early-Stage dataset is illustrated in Fig. 5. The graph 
shows that the FA-SVM combination achieves an average 
accuracy of 83.39%, outperforming other algorithm 
combinations within the FA category. The highest average 
precision is also attained by the FA-SVM algorithm, 
achieving 96.15%, which is superior to the FA-NB category. 
Next, the FPA achieves the best average accuracy with the 
FPA-LR combination, at 74.91%, whereas the highest 
average precision is observed in the FPA-DT combination, at 
83.29%. In the SSA category, the SSA-SVM combination 
demonstrates the best average accuracy of 74.48%, while the 
SSA-NB combination achieves an average precision of 
85.01%. In the JA, both the average accuracy and precision 
peaks are found in the JA-SVM combination, with values of 
82.90% and 95.68%, respectively. The GA performs best, 
achieving an average accuracy of 81.71% in the GA-SVM 
combination, with the highest average precision of 95.68%. 
Within the Particle Swarm Optimization framework, PSO-
NB achieves the highest average accuracy at 80.07%. 

Simultaneously, it also secures the best average precision 
of 92.37%. For the Bat Algorithm, the combination BA-LR 
achieves an accuracy of 78.07% and a precision of 92.54%. 
Cuckoo Search achieves an accuracy of 83.39% in the CS-
NB combination and a precision of 96.15%. Grey Wolf 
Optimization attains its best average accuracy and precision 
in the GWO-SVM combination, recording values of 82.62% 
and 92.87%, respectively. Lastly, the Sine Cosine Algorithm 
achieves the highest average accuracy of 81.92% in the SCA-
NB combination and an average precision of 95.62% in the 
SCA-SVM combination.  

  

 

Figure 4. Best combination performance based on average accuracy and Average precision on the PIMA dataset
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Figure 5. Best combination performance based on average accuracy and average precision on the Early-Stage dataset

 

Fig. 6 also presents the best of the average accuracy and 
average precision results using the Vanderbilt dataset. The 
FA-KNN combination achieves the highest average accuracy 
at 92.64%, while FA-NB attains an average precision of 
94.12%. In comparison, for the Flower Pollination 
Algorithm, the FPA-SVM combination secures the best 
average accuracy of 87.37% and an average precision of 
87.79%. Similarly, the SSA obtains its highest accuracy in the 
SSA-LR combination at 87.79% and achieves an average 
precision of 88.59% in the SSA-NB combination. In the 
context of the JA, the best average accuracy and precision are 
found in the JA-LR combination, yielding 92.14% accuracy 
and 93.10% precision. 

Furthermore, the GA delivers the best average accuracy 
of 90.94% in the GA-NB combination, with its corresponding 
best average precision of 91.89% to PSO, the preferred 
algorithm is PSO-SVM with an average accuracy of 90% and 
an average precision of 90.87%. Conversely, within the BA 
framework, BA-DT achieves the highest accuracy result of 
89.94%, while its average precision on the algorithm is 
91.46%. Contrasting with Cuckoo Search, the CS-NB 
combination performs best, with an average accuracy of 
92.12% and a precision of 93.22%. Moreover, Grey Wolf 
Optimization demonstrates an algorithm achieving the 

highest accuracy of 90.96% in the GWO-LR combination, 
followed by the best precision of 91.86% in the GWO-KNN 
combination. Lastly, the Sine Cosine Algorithm performs 
best, with an accuracy of 90.50% in the SCA-LR combination 
and an average precision of 91.89% in the SCA-NB 
combination. 

Table 5 presents a comparative analysis of various 
machine learning models applied to the PIMA, Early Stage, 
and Vanderbilt datasets, demonstrating that our proposed 
models consistently outperform conventional methods in both 
accuracy and precision. For the PIMA dataset, prior studies 
using K-Means, Decision Tree (DT), PCA + LR, and KNN 
achieved accuracy rates between 67.00% and 73.00%, while 
our proposed FA-LR, BA-LR, and CS-LR models surpass 
them with an accuracy of 74.71% and a competitive precision 
of 70.75%. In the Early-Stage dataset, traditional models such 
as Multilayer Perceptron (MLP), Deep Neural Networks 
(DNN), Logistic Regression (LR), and KNN attained 
accuracy values ranging from 64.40% to 80.00%, whereas 
our proposed FA-SVM model significantly outperforms them 
with an outstanding accuracy of 83.39% and an exceptional 
precision of 96.15%. 

 

 

Figure 6. Best combination performance based on average accuracy and average precision on the Vanderbilt dataset

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/


IJID (International Journal on Informatics for Development), e-ISSN: 2549-7448 

Vol. 15, No. 1, June 2026, Pp.672-682 

 
This article is distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License. 

See for details: https://creativecommons.org/licenses/by-nc-nd/4.0/ 
 

674 
 

Similarly, for the Vanderbilt dataset, existing 
approaches, including Random Forest, LR, Stochastic 
Gradient Descent (SGD), and Gradient Boosting, achieved 
accuracy rates between 71.00% and 91.50%, while our 
proposed FA-NB model demonstrates the highest 
performance with an impressive accuracy of 92.88% and a 
remarkable precision of 94.14%. These results highlight the 
clear advantage of our metaheuristic-based feature selection 
techniques, proving their superior effectiveness in enhancing 
predictive performance across diverse datasets and complex 
classification tasks. 

Table 6 shows a comparison of different studies that used 
various methods and validation techniques to predict diabetes 
using the PIMA, Early-Stage, and Vanderbilt datasets. It 
includes the method used in each study, the validation 
approach, and the accuracy achieved. For the PIMA dataset, 
past studies applied algorithms like Firefly-Bat Neural 

Networks, Ant Colony Optimization, and Bees Algorithm, 
with accuracy results ranging from 70% to 73%. In this study, 
the combination of FA–LR and Cuckoo Search and Logistic 
Regression (CS–LR) achieved a higher accuracy of 74.71% 
using 10-fold cross-validation. Next, for the Early-Stage 
dataset, previous research tested SVM, Multilayer 
Perceptron, and Naïve Bayes, with accuracies between 
64.40% and 76.60%. The method proposed in this study, 
Firefly Algorithm with SVM (FA–SVM) and Cuckoo Search 
with Naïve Bayes (CS–NB), improved the accuracy to 
83.92%, also using 10-fold cross-validation. On the 
Vanderbilt dataset, other studies reached up to 92.5% 
accuracy using traditional methods like Logistic Regression 
and Decision Trees. However, the current study’s approach 
using the Firefly Algorithm with Naïve Bayes (FA–SVM) 
achieved the highest accuracy of 92.98% with 10-fold cross-
validation.

   

Table 3 Classification Accuracy (%) of Ten Metaheuristic Algorithms of Five Classifiers for Three Datasets 

Dataset 
ML 

Algorithm 

Metaheuristic Algorithm 

FA FPA SSA JA GA PSO BA CS GWO SCA 

PIMA 

KNN 72.826 71.181 70.186 71.636 71.980 72.339 72.339 72.320 71.967 72.320 

SVM 74.392 73.349 71.567 73.372 73.902 73.588 74.160 73.489 73.097 73.489 

NB 74.696 73.173 70.108 73.893 74.062 74.696 74.696 74.019 74.019 74.380 
DT 72.904 71.432 70.277 72.727 72.140 72.123 72.904 72.121 72.675 72.121 

LR 74.718 72.562 71.424 74.393 73.997 73.688 74.718 74.718 73.616 73.917 

Early-Stage 

KNN 82.464 71.303 72.875 82.140 79.666 75.732 76.408 81.594 81.630 81.578 

SVM 83.392 73.774 74.483 82.905 81.712 77.816 78.120 82.297 82.624 81.686 
NB 83.274 71.058 72.486 81.633 78.705 80.075 78.800 83.392 79.382 81.924 

DT 82.496 73.163 72.401 82.676 79.601 75.287 77.535 82.058 81.950 80.431 

LR 82.535 74.911 72.284 81.526 80.415 73.601 79.078 81.964 80.748 81.359 

Vanderbilt 

KNN 89.636 85.286 84.123 89.166 88.717 88.149 88.004 90.038 89.029 87.867 
SVM 92.649 87.376 86.064 90.102 90.465 90 89.940 91.910 90.551 90.153 

NB 92.888 86.876 87.470 91.675 90.948 89.764 89.376 92.128 90.149 90.940 
DT 87.025 82.363 78.465 86.235 86.290 84.294 89.406 86.085 85.807 85.893 

LR 92.696 86.897 87.799 92.149 90.282 89.388 89.406 92.085 90.965 90.500 

  

Table 4. Classification Precision (%) of Ten Metaheuristic Algorithms by Five Classifiers for Three Datasets 

 

Dataset 
ML 

Algorithm 

Metaheuristic Algorithm 

FA FPA SSA JA GA PSO BA CS GWO SCA 

PIMA 

KNN 68.377 65.117 62.371 66.364 67.173 68.019 68.019 67.964 67.121 67.964 

SVM 72.399 70.580 66.870 70.545 71.827 71.083 72.399 70.948 68.335 70.948 

NB 70.338 67.787 61.128 68.834 69.104 70.338 70.338 68.834 68.834 69.677 
DT 72.577 68.133 62.052 71.959 69.979 70.093 72.577 69.200 71.892 69.2 

LR 70.759 63.634 50.192 69.941 68.870 64.258 70.759 70.759 67.886 68.556 

Early-Stage 

KNN 95.116 81.455 82.222 94.980 92.517 88.359 88.600 94.478 94.791 94.579 

SVM 96.155 82.980 84.392 96.242 95.685 90.504 92.543 95.921 95,879 95,629 
NB 96.153 83.202 85.013 93.876 92.357 92.379 92.208 96.155 92,802 95,084 

DT 95.867 83.290 79.513 95.936 92.415 87.326 89.726 95.923 95.817 93.966 
LR 95.016 82.650 77.729 94.598 93.519 83.669 91.526 95.436 94.212 93.875 

Vanderbilt 

KNN 92.491 87.833 86.839 92.081 91.383 90.859 90.640 93.041 91.869 90.625 

SVM 93.943 87.796 86.308 90.959 91.449 90.879 90.779 93,070 91.472 91.104 

NB 94.124 87.598 88.592 92.850 91.898 90.707 90.228 93.221 90.955 91.893 
DT 92.292 87.525 86.858 91.423 91.164 89.505 91.465 91.318 90.737 90.355 

LR 93.745 87.388 88.392 93.105 91.055 90.127 90.022 93.063 91.745 91.275 

  
Table 5. Comparative Similar Study Showing Accuracy and Precision 

Dataset Study Method Accuracy Precision 

PIMA 

[36] K-Means 67.00% N/A 

[37] DT 71.35% N/A 

[38] PCA + LR 72.70% 64.30% 

[39] KNN 73.00% 87.00% 
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This Study Proposed FA-LR, BA-LR, and CS-LR 74.71% 70.75% 

Early Stage  

[40] Multilayer Perceptron 64.40% 64.40% 

[41] Deep Neural Network 78.00% N/A 
[42] LR 78.00% N/A 

[43] KNN 80.00% 81.20% 

This Study  Proposed FA-SVM  83.39% 96.15% 

Vanderbilt 

[44] Random Forest 71.00% 78.00% 

[45] LR 89.00% N/A 

[46] Stochastic Gradient Descent 90.68% N/A 
[47] Gradient Boosting 91.50% N/A 

This Study Proposed FA-NB 92.88% 94.14% 

 

 
Table 6. Comparative Study of the Method Used and the Validation Method 

 
Dataset Study Method Validation Method Accuracy 

PIMA 

[48] 
Hybrid Firefly-Bat Optimized 

Fuzzy Artificial Neural Network 
10-Fold Cross Validation 70% 

[15] Ant Colony Optimization (ACO) K-Fold Cross Validation 71% 

[49] 
Baseline Algorithm DT, SVM 

dan AdaBoost 
Train_test_split 70%: 30% 

DT = 70.80% 
SVM = 66.50% 

AB = 71.00% 

[50] Multi-Objective Bees Algorithm 10-Fold Cross Validation 72% 

[51] 
Binary Wheal Optimization 
Algorithm (BWOA)-KNearest 

Neighbors 

K-Fold Cross Validation 73% 

This Study 

Firefly Algorithm-Logistic 

Regression (FA-LR) and 

Cuckoo Search-Logistic 

Regression (CS-LR) 

10-Fold Cross Validation 74.7186% 

Early-Stage 

[52] SVM K-Fold Cross Validation 66.56% 
[40] Multilayer Perceptron  10-Fold Cross Validation 64.40% 

[53] Naïve Bayes Cross-Validation 76.60% 

[54] SVM Train_test_split 60: 40% 62% 

This Study 

Firefly Algorithm-Support 

Vector Machine Classifier (FA-

SVM) 

Cuckoo Search-Naïve Bayes 

(CS-NB) 

10-Fold Cross Validation 83.392% 

    

Vanderbilt 

[55] Univariate Feature Selection LR 10-Fold Cross Validation 88.89% 

[56] 
Adaptive Synthetic Sampling-

KNN (ADASYN-AIIKNN) 
10-Fold Cross Validation 89.80% 

[57] 
Genetic Algorithm- Decision 

Tree 
Train Test Split 80:20 90.06% 

[58] Quadratic Discriminant Analysis 10-Fold Cross Validation 85.91% 
[59] Logistic Regression Train Test Split 70%: 30% 92.5% 

This Study 
Firefly Algorithm-Naïve Bayes 

(FA-NB) 
10-Fold Cross Validation 92.88% 

 

3.2 Best Fitness and Wilcoxon Test 

The data in Table 7 are performance results measured by 

best fitness and Wilcoxon Signed-Rank test values to test 

statistical significance (α). This test uses the p-value, which 

is above 0.05, meaning that the algorithm combination has no 

significance, and the model performance is not much 

different from other models. This study proposes the FA-LR 

algorithm on the PIMA CS-NB dataset on the Early-Stage 

dataset, and FA-NB on the Vanderbilt dataset, which is 

marked as “-“ to calculate statistical significance because it 

has the highest accuracy.  
In using the PIMA dataset, the best fitness obtained from 

the experimental results is 0.12641, which is the smallest 
value in fitness value acquisition. The model evaluation 
metric is to use the Wilcoxon Signed-Rank test to test 

statistical significance (α). This test uses the p-value, which 
is above 0.05, meaning that the algorithm combination has no 
significance, and the model performance is not much 
different from other models. The algorithm combinations that 
are the reducing factor in the Wilcoxon test are the FA-LR, 
BA-LR, and CS-LR algorithms. Algorithms that do not have 
statistical significance are shown in FA-NB, FPA-LR, JA-
NB, JA-LR, GA-LR, PSO-NB, PSO-LR, BA-NB, CS-NB, 
GWO-NB, GWO-LR, SCA-NB, and SCA-LR. 

In the Early-Stage dataset, the optimal fitness value of 
0.06344 is achieved by utilizing different algorithm 
combinations. Specifically, the FA yields the best results with 
the FA-SVM, FA-NB, and FA-KNN combinations. The FPA 
performs well with the FPA-SVM, FPA-DT, and FPA-LR 
combinations. The SSA produces favorable outcomes with 
the SSA-DT combination. The JA demonstrates good 
performance with the JA-NB combination. Lastly, the PSO 
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algorithm achieves satisfactory results with the PSO-NB 
combination. The combinations of BA-KNN, BA-SVM, and 
BA-DT, along with the BA, yielded the highest performance.  

Additionally, the combination GWO-SVM, using the 
GWO algorithm, and the combination SCA-NB, using the 
SCA, also achieved excellent results. Then, in the Wilcoxon 
Test results, the FA-NB, FA-DT, and FA-LR combinations 
have no significance against FA-SVM or CS-NB in the FA 
category. In the FPA category, only the FPA-LR combination 
is of statistical importance with a value of 0.0002624. 

Furthermore, in SSA, SSA-KNN and SSA-VM are 
algorithms with statistical significance. In contrast to JA, only 
the JA-NB and JA-DT combinations do not have any 
significance. Similarly, other algorithm combinations that do 
not have significance against FA-SVM and CS-NB 
algorithms include PSO-KNN and PSO-SVM. While 
utilizing the Vanderbilt dataset, the minimum iteration in the 
combination of the FA, JA, and SCA offers the optimal 
fitness point of 0.0672. On the other hand, the SSA-DT 
combination obtains the highest fitness value, which equals 
0.1335. According to the Wilcoxon test, the Firefly 
Algorithm demonstrates statistical significance in the FA-
SVM and FA-LR combinations. The FPA-NB and FPA-LR 
combinations have insignificant values of 0.297 and 0.3660, 
respectively. The SSA demonstrates relevance solely in the 
SSA-KNN combination, with a precise value of 0.00665. The 
Jaya Algorithm yielded noteworthy combinations of JA-SVM 
and JA-NB compared to JA-LR. 

The combination of GA-KNN and GA-NB demonstrates 
a notable advantage over GA-SVM in the context of GA. The 
PSO-KNN combination presents the lowest level of 
importance compared to PSO-SVM in PSO. The BA had a 
notable impact on the combination of BA-DT. The CS 
demonstrates notable improvements in CS-KNN and CS-LR 
compared to CS-NB. In the Wilcoxon Test value, FA only has 
a significant value in the combination of FA-SVM and FA-
LR. Next, only FPA-SVM is the algorithm combination with 
a significance value of 0.000305. SSA has no algorithm that 
has significance.  

Furthermore, JA obtained JA-NB, which became a 
significant algorithm against FA-NB. Next, GA obtained the 
GA- GA-NB combination. Unlike PSO, only the PSO-NB 
combination is significant. Similarly, BA with BA-NB is a 
significant algorithm. Then, CS obtained CS-SVM as a 
combination, which was significant against FA-NB. Then, in 
GWO, only the GWO-NB combination has a significant 
value. Finally, SCA only obtains SCA-NB with a 
combination of algorithms with significance. From the results 
of the analysis, it can be seen that the combination of 
metaheuristic algorithms using NB and SVM is statistically 
significant against FA-NB. 

 

3.3 Convergence Curve 

Table 8 demonstrates that each of the five combinations of 
the FA consistently attained the global optimum on the PIMA 
dataset, with a fitness value of 0.1264 being the most optimal. 
FA-LR, FA-SVM, and FA-NB rapidly reached convergence, 
while FA-NB had an initial value of 0.2512. Next, the JA and 
PSO exhibited parallel patterns, with JA-DT commencing at 
0.2511, while JA-KNN, JA-SVM, JA-NB, and JA-LR 
attained the optimal fitness value of 0.0634. PSO-DT and 
PSO-NB commenced at 0.2500 and 0.2506, respectively, but 
PSO-KNN, PSO-SVM, and PSO-LR initiated at 0.1264. The 
GWO algorithm demonstrated that GWO-DT and GW-NB 
initially had values that were not optimal, whereas GWO-
KNN, GWO-SVM, and GWO-LR quickly achieved the 
optimal values.  

Besides, the SCA shows excellent performance, especially 
when used with SCA-SVM, SCA-LR, and SCA-DT. The 
combinations of BA-DT and BA-LR quickly and effectively 
reached the global optimum. The global optimum was swiftly 
achieved only by using the CS-LR. The SSA and GA showed 
initial differences, with SSA-KNN starting at 0.3735 and GA-
LR at 0.3734. However, all combinations of the ten algorithms 
finally reached the global optimum of 0.1264 without 
premature convergence

 
Table 7. Best Fitness and the Wilcoxon Test for Each Combined Algorithm 

 

Combined Algorithm 
Best Fitness Wilcoxon Test 

PIMA Early Stage Vanderbilt PIMA Early Stage Vanderbilt 

FA-KNN 0.126412338 0.0634436 0.0672821 1.86265E-09 0.003314453 1.86E+06 

FA-SVM 0.126607143 0.0634436 0.0672821 3.85624E-06 - 0.000305511 

FA-NB 0.126412338 0.0634436 0.0672821 0.309023385 0.317310508 - 
FA-DT 0.126607143 0.0647181 0.0672821 1.86265E-09 0.067889155 1.86E+06 

FA-LR 0.126607143 0.0634436 0.0672821 - 0.179712495 0.000112725 

FPA-KNN 0.126412338 0,0665809 0.1330256 1.86E+06 2.91E+11 0.034536734 

FPA-SVM 0.126412338 0.0634436 0.0721538 0.000152871 3.54E+08 - 

FPA-NB 0.126412338 0.0650123 0.1328974 0.013208347 3.23E+10 0.297734257 

FPA-DT 0.126412338 0.0634436 0.0675385 1.86E+06 1.23E+11 0.000441624 

FPA-LR 0.126412338 0.0634436 0.1327692 0.670180589 0.00026245 0.366010269 

SSA-KNN 0.126412338 0.1251225 0.1337949 1.86E+06 0.000345249 0.006650218 

SSA-SVM 0.126412338 0.0656985 0.0679231 3.70E+08 0.000257131 0.492496412 

SSA-NB 0.126996753 0.0638358 0.0672821 0.000141032 1.90E+11 - 
SSA-DT 0.126412338 0.0634436 0.1335385 1.86E+06 2.62E+11 1.30E+07 

SSA-LR 0.126996753 0.0647181 0.1330256 0.005033508 5.50E+10 0.715132967 

JA-KNN 0.126412338 0.0634436 0.0672821 1.86E+06 0.00146885 1.42E+10 
JA-SVM 0.126412338 0.0634436 0.0672821 3.87E+09 0.043114447 0.022600679 

JA-NB 0.126412338 0.0634436 0.0672821 0.18204979 0.067889155 0.049282444 
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Combined Algorithm 
Best Fitness Wilcoxon Test 

PIMA Early Stage Vanderbilt PIMA Early Stage Vanderbilt 

JA-DT 0.126412338 0.0634436 0.0672821 1.86E+06 0.10880943 1.86E+06 
JA-LR 0.126412338 0.0638358 0.0672821 0.317310508 0.027707849 - 

GA-KNN 0.126412338 0.0638358 0.0672821 1.86E+06 0.000293053 0.044907209 

GA-SVM 0.126412338 0.0634436 0.0672821 1.30E+06 0.007685794 - 

GA-NB 0.126412338 0.0638358 0.0672821 0.058997545 0,002217721 0.037783417 
GA-DT 0.126412338 0.0649142 0.0675385 1.86E+06 0.005062032 1.60E+10 

GA-LR 0.126412338 0.0638358 0.0675385 0.179712495 0.007685794 0.837257554 

PSO-KNN 0.126412338 0.0634436 0.0672821 1.86E+06 2.70E+11 0.026630168 
PSO-SVM 0.126996753 0.0638358 0.0672821 3.13E+10 7.99E+09 - 

PSO-NB 0.126412338 0.0634436 0.0672821 0.309023385 0.007685794 0.852549787 

PSO-DT 0.126412338 0.0634436 0.0680513 1.86E+06 0.000654958 1.60E+10 
PSO-LR 0.126412338 0.0647181 0.0679231 0.10880943 0.000293053 0.779721214 

BA-KNN 0.126412338 0.0638358 0.0675385 1.86E+06 0.00013142 0.253436105 

BA-SVM 0.126412338 0.0634436 0.0675385 3.86E+09 0.000651666 0.87871595 

BA-NB 0.126412338 0.0634436 0.0672821 0.309023385 0.003502272 - 
BA-DT 0.126412338 0.0634436 0.0672821 1.86E+06 0.000978707 0.00171859 

BA-LR 0.126412338 0.0647181 0.0672821 - 0.00146885 0.526770984 

CS-KNN 0.126542208 0.0638358 0.0672821 1.86E+06 0.00220902 0.001232104 
CS-SVM 0.126542208 0.0634436 0.0672821 3.86E+09 0.067889155 0.031864783 

CS-NB 0.126542208 0.0628365 0.0672821 0.147378523 - - 

CS-DT 0.126542208 0.0634436 0.0672821 1.86E+06 0.011718686 3.86E+08 
CS-LR 0.126412338 0.0634436 0.0672821 - 0.017960478 0.01718927 

GWO-KNN 0.126542208 0.0634436 0.0672821 1.86E+06 0.000437777 0.109432058 

GWO-SVM 0.126542208 0.0634436 0.0672821 3.86E+09 0.067889155 0.416649397 
GWO-NB 0.126542208 0.0634436 0.0672821 0.147378523 0.002183045 0.892825524 

GWO-DT 0.126542208 0.0634436 0.0675385 1.86E+06 0.011718686 3.86E+08 

GWO-LR 0.126542208 0.0638358 0.0675385 0.10880943 0.002217721 - 

SCA-KNN 0.126542208 0.0634436 0.0672821 1.86E+06 0.00146393 0.040489722 
SCA-SVM 0.126542208 0.0634436 0.0672821 3.86E+09 0.007685794 - 

SCA-NB 0.127191558 0.0634436 0.0672821 0.263139822 0.027707849 0.123902137 

SCA-DT 0.126542208 0.0647181 0.0672821 1.86E+06 0.007685794 4.42E+09 
SCA-LR 0.126542208 0.0634436 0.0672821 0.179712495 0.017960478 0.646895924 

 

Table 8. Convergence Curves for Each Algorithm 

Alg. 
Datasets 

PIMA Early Stage Vanderbilt 

FA 

 

 
 

 

 

 
 

FPA 
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Alg. 
Datasets 

PIMA Early Stage Vanderbilt 

SSA 

 

 
 

  

JA 

 

 
 

  

 
GA 

 

 
 

  

PSO 

 

 

 
 

 

BA 
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Alg. 
Datasets 

PIMA Early Stage Vanderbilt 

CS 

 

 
 

 

 

 
 

GWO 

 

 
 

 

 

 
 

SCA 

 

 
 

  

In comparison with the Early-Stage dataset, which 
uses several exploration methods to locate the global 
best/optimum solution. The FA-KNN combination begins 
with the highest fitness value of 0.372, followed by FA-SVM, 
FA-NB, and FA-LR at 0.3105. FA-DT achieves the fastest 
search initiation with a time of 0.2486. All combinations 
effectively reach the global optimum at 0.0634 without being 
confined to local optima. Then, the FPA-LR combination 
initiates at a distance of 0.31113971 and takes three 
exploration steps: [0.25044, 0.1872, 0.1262] toward the 
minimum fitness value. Next, the FPA-NB, FPA-DT, and 
FPA-KNN models achieve a score of 0.250, while the FPA-
SVM model starts exploring the fastest with a score of 
0.1872.  

The FPA-KNN algorithm is the only one that becomes 
stuck in a local minimum, prematurely converging at a value 
of 0.1262, and so fails to find the optimal solution. The 
convergence of the Salp Swarm Algorithm (SSA). The SSA-
NB algorithm commences with a value of 0.3101 and 
becomes trapped in a local minimum at 0.252, which is also 
the starting point for the SSA-DT and SSA-LR algorithms. 

SSA-DT reaches a value of 0.189 at iteration 6 and a value of 
0.1273 at iteration 3. On the other hand, SSA-LR reaches a 
value of 0.1273 at iteration 4. The SSA-KNN algorithm 
commences with an initial value of 0.187 and concludes with 
a final value of 0.1253. However, it fails to get the ideal 
solution due to premature convergence. SSA-SVM exhibits 
superior computational efficiency in identifying the optimal 
fitness, commencing from the same initial point as SSA-
KNN. Only three permutations of the SSA algorithm attain 
the global optimum.  

The JA commences the search initially with JA-NB at a 
value of 0.311, subsequently followed by JA-DT and JA-LR. 
The GA ranks GA-SVM as the highest with a value of 0.371, 
followed by GA-LR and GA-KNN. Among the PSO 
algorithms, PSO-DT demonstrates the highest speed in 
converging towards the global optimum, while PSO-NB 
exhibits the slowest convergence. The BA demonstrates that 
BA-LR has the highest speed, starting at 0.24887255, while 
BA-KNN has the slowest performance. The CS algorithm 
demonstrates that CS-NB, CS-LR, and CS-SVM are the most 
efficient, while CS-DT is the slowest, starting with a value of 
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0.249. On the other hand, GWO exhibits the GWO-DT 
variant with the highest initial speed of 0.1290, whereas the 
SCA identifies SCA-SVM as the fastest. 

Lastly, the convergence curves of various metaheuristic 
algorithm combinations highlight their differing efficiencies 
in reaching global optima by using the Vanderbilt dataset. 
The FA combined with KNN shows the slowest start with a 
fitness value of 0.3308, while FA-SVM achieves the fastest 
global optimum search with a fitness value of 0.13366. Next, 
FPA-DT demonstrates the farthest search point but excels in 
deeper exploration, achieving a global best at 0.06753846. 
Then, the SSA shows the longest initial search distance with 
SSA-KNN and SSA-NB at 0.3308, with SSA-SVM being the 
fastest to reach the global best. Furthermore, the JA exhibits 
the farthest convergence process with JA-DT at 0.3310, 
followed by JA-SVM, JA-NB, JA-LR, and JA-KNN, all 
achieving global optimum. The PSO shows only PSO-NB 

with a fitness value of 0.3307 as the farthest point, while 
others like PSO-KNN, PSO-NB, and PSO-NB start at 0.2003, 
with PSO-DT achieving the fastest global best. Next, BA 
reveals BA-KNN as having the longest exploration process 
compared to BA-SVM and BA-LR, starting at 0.2001, but all 
combinations eventually achieve the global best. CS 
algorithm shows CS-KNN, CS-SVM, CS-NB, and CS-LR 
reaching global best fitness at 0.1992, the fastest among them, 
while CS-DT starts at 0.2656, with all combinations 
achieving global best. In the GWO algorithm, GWO-KNN 
initiates the farthest search at 0.331, yet successfully attains 
the global best. 

 

 

 

 

Table 9. Comparison of Convergence Curves of the Top 5 Best Performing Algorithm 

Dataset Best-Performing Convergence Curve 

PIMA 

 

 

 

 

 

Early Stage 

 

 

Vanderbilt 
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Table 10. Important Features Selected for Each Algorithm 

Alg. 
Dataset 

PIMA Early Stage Vanderbilt 

FA Glucose, Insulin, BMI Polyuria, Polyphagia, Delayed Healing Glucose, HDL Chol, BMI, Waist 

FPA Glucose, Insulin 
Gender, Polyuria, Polyphagia 
Genital Thrush, Visual Blurring, 

Delayed Healing, Partial Paresis, Muscle Stiffness 

Glucose, HDL Chol, Gender, Height, 
Weight, BMI, Systolic BP, Diastolic BP, 

Waist 

SSA 
Glucose, Blood Pressure, Insulin, 

Diabetes Pedigree Function, Age 

Gender, Polyuria, Polydipsia, 
Sudden Weight Loss, Visual Blurring, Delayed Healing, 

Partial Paresis 

Muscle, Stiffness, Alopecia 

Glucose, Chol / HDL ratio 
Age, Height, BMI, Gender 

Hip, Diastolic BP, Waist/ hip ratio, 

Systolic BP 

JA Glucose, Insulin 
Polyuria, Polydipsia,  

Sudden Weight Loss 
Glucose, Height 

GA Glucose, Insulin Age, Polyuria, Polydipsia Glucose, Height, Diastolic BP 

PSO 
Glucose, Blood Pressure, 
Age, Insulin 

Polyuria, Sudden Weight Loss, 
Visual Blurring, Irritability, Muscle Stiffness 

Glucose, BMI, Diastolic BP 

BA Glucose, Insulin 
Polyuria, Sudden Weight Loss, 

Polyphagia 
Glucose, HDL Chol, Height, Diastolic BP 

CS Glucose, Age Age, Polyuria, Polyphagia Glucose, Height, Diastolic BP 

GWO Glucose, Blood Pressure Polyuria, Polydipsia Glucose, HDL Chol, Waist 

SCA Glucose Polyuria, Polydipsia 
Glucose, Height, HDL, Chol 
Diastolic BP 

 

In Table 9, which contains a comparison of the top 5 best-
performing algorithms in the convergence curve, it can be 
seen that the proposed FA LR model (the same convergence 
is also in BA-LR and CS-LR) on the PIMA dataset can 
achieve the best fitness quickly. In contrast to the Early-Stage 
dataset, in the global solution search process, the proposed 
FA-SVM (which has the same performance as CS-NB) 
succeeds in reaching the best solution even though it starts 
from a more distant initial point compared to GWO-SVM. 
Finally, in the same case as Early Stage, using the Vanderbilt 
dataset, the proposed FA-NB succeeded in searching for the 
global best despite initializing farther from GWO-LR. 

 

3.4 Selected Features 

 The feature selection techniques utilized by the 
metaheuristic algorithms consist of ten different methods, 
each possessing distinct characteristics in conducting search 
and feature selection. Table 10 presents the selected features 
identified by each metaheuristic algorithm for each data.  The 
selected features, such as glucose levels, insulin levels, BMI, 
and blood pressure, were chosen based on their strong 
correlation with diabetes diagnosis and progression. For 
instance, glucose and insulin are fundamental indicators of 
diabetes, directly influencing how models differentiate 
between diabetic and non-diabetic patients. Similarly, 
symptoms like polyuria (excessive urination) and polydipsia 
(excessive thirst) are well-known early signs of diabetes, 
contributing to better sensitivity in ML models. Other 
physiological markers, including blood pressure and BMI, 
serve as indicators of metabolic disorders, helping the model 
detect patterns associated with diabetes-related 
complications. Beyond feature selection, it is important to 
empirically justify their impact on model performance. 

 

4 CONCLUSION 

This study has proposed a comprehensive comparison 
of combined Metaheuristic and ML for detecting diabetes 
disease. In conclusion, the BA-LR and CS-LR PIMA 
achieved the highest average accuracy of 74.71% in the 
PIMA dataset. The FA-SVM and CS-NB combination 
achieved the highest average accuracy of 83.39% on the 
Early-Stage dataset, with CS-NB having the highest precision 
of 96.15%. The SSA implementation suffered from 
premature convergence, causing SSA-KNN and SSA-NB to 
become trapped in local optima. The algorithm with the 
highest average accuracy and precision on the Vanderbilt 
dataset was 94.12% and 92.64%, respectively. The 
combination of FPA-KNN, SSA-KNN, and SSA-NB became 
stuck in local optima. Future research should explore the 
performance of the algorithms on different datasets to 
determine their generalizability and robustness. Additionally, 
combining metaheuristics and ML algorithms showed 
promising results, and further research could investigate more 
combinations and variations to find the optimal combination 
for different data. 
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