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Abstract— Diabetes affects about 1.9% of the global population, mainly through Type 2 diabetes. Machine learning (ML) serves a
pivotal role in enhancing diabetes prediction by analyzing complex datasets. Feature selection, a crucial ML pre-processing step,
improved prediction accuracy by identifying relevant data and discarding irrelevant features. This study investigates the combination
of metaheuristic algorithms and ML techniques to enhance diabetes prediction accuracy and computational efficiency. Utilizing the
PIMA, Early Stage, and Vanderbilt datasets, experiments evaluated ten algorithm-model combinations based on metrics like
accuracy, precision, the Wilcoxon test, and convergence curves. Key findings included that Firefly Algorithm-Logistic Regression,
Bat Algorithm-Logistic Regression, and Cuckoo Search-Logistic Regression achieved 74.72% accuracy on PIMA; Firefly Algorithm-
Support Vector Machine and Cuckoo Search-Naive Bayes achieved 83.39% accuracy and 96.15% precision on Early Stage; and
Firefly Algorithm-Naive Bayes achieved 92.88% accuracy and precision on Vanderbilt. These results highlighted the potential of
integrating metaheuristics with ML methods to improve clinical diagnostics. Future research is recommended to validate algorithm
robustness across diverse datasets to further optimize diabetes prediction strategies.

Keywords—complex_dataset; diabetes_prediction; disease_detection; feature_selection; prediction_accuracy



IJID (International Journal on Informatics for Development), e-ISSN: 2549-7448

1 INTRODUCTION

Diabetes is a condition where blood sugar levels are not
controlled in the body, leading to increased blood glucose
levels, often referred to as hyperglycemia [1]. Diabetes is a
severe health issue that affects many people globally,
including in Indonesia. The International Diabetes Federation
(IDF) reports that diabetes prevalence in the world is 1.9%,
with Type 2 diabetes being the most prevalent, accounting for
95% of the global population. In Indonesia, Type 1 diabetes
cases reached 41,8 million in 2022, making it the country with
the highest prevalence of Type 1 diabetes in ASEAN and the
third-highest prevalence among 204 countries globally [2]. In
an era of rapid technological development, by 2023, various
human jobs will be more accessible. According to Michael
Chui in [3], there are many emerging technology trends, such
as next-generation software engineering and the application of
Artificial Intelligence in various industries, including the
medical sector. Health services are an essential pillar of a
healthy society, so applying Al and computational methods in
healthcare systems is necessary to create healthier societies
and reduce the risk of disease in future generations. It will
improve the quality of life and introduce the concept of
"telemedicine” [4].

Currently, healthcare professionals conduct medical
examinations to predict the risk of developing diabetes. The
data collected from the evolving diagnostic technology is
beneficial for the diagnosis and treatment of diseases.
However, doctors often find it difficult to quickly organize and
analyze this data. Therefore, ML is increasingly used in the
medical field to help doctors predict diseases and determine
the outcome of their treatment [5]. ML is a technique that
imitates human behaviour by learning from data and is highly
effective in completing certain tasks [6]. Classification and
prediction are two of the many tasks that ML can do in
problem-solving. Classification sets the same pattern for a
given class or target. ML classification is also used to predict
disease through data that serves as a predictor and target to
determine whether a person suffers from diabetes [7].

Feature selection is one of the classification pre-processing
techniques commonly used in ML and Statistics to improve
learning performance and solve problems with high-
dimensional data. In high-dimensional data, feature selection
is employed to select a relevant subset of features and remove
redundant, excessive, and undesirable features prior to
developing a classification model. [8]. Redundant features or
attributes are removed because they do not contribute well as
predictors to the learning model. After all, the information
they provide has been presented or represented by other
features. [9]. In addition, irrelevant features negatively affect
the accuracy of the classification results and add to the
difficulty of finding useful information in the data. [10].

Feature selection is divided into three methods: Filter,
Wrapper, and Embedded. Filter methods are simple
techniques that do not rely on ML algorithms and always focus
on data characteristics. [11]. In contrast to the Filter method,
the Wrapper method combines metaheuristic algorithms with
ML algorithms to obtain the best features and gives better
results than the Filter method. [11]. This approach uses a
modeling algorithm that generates and evaluates each subset.
The generated subset in Wrapper techniques is derived from
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various search algorithms. [12]. Meanwhile, the Embedded
method efficiently selects features and performs well in the
training process [5]. The hierarchy of feature selection
algorithms can be seen in Fig. 1.

Research into the prediction of diabetes using a
combination of metaheuristic algorithms is widely used and
continuously developed to contribute to methods to detect
diabetes quickly and achieve better performance efficiency.
Herlambang et. al. in [13] obtained an accuracy performance
of 74.67% using the pure XGBoost model ML. Subsequently,
Astuti et al. [14] used the BWOA algorithm in combination
with K-Nearest Neighbor, Naive Bayes, Random Forest,
Logistic Regression, Decision Tree, and Neural Network and
achieved the best accuracy on BWOA-NB of 76%.
Furthermore, Shankar et al. in [15] conducted experiments
with the Ant Colony Optimization algorithm, obtaining an
accuracy of 71%, and compared with the Grey Wolf
Optimization algorithm with an accuracy of 81.15%.

Various studies have utilized several algorithmic
approaches in combining metaheuristic and machine learning
algorithms. Although these studies highlight the potential of
such combinations in improving classification performance,
they often focus on a single pairing of metaheuristic and
machine learning algorithms without conducting a
comparative  analysis across multiple combinations.
Moreover, limited research has been conducted in the context
of diabetes prediction using a comprehensive evaluation of
different metaheuristic-based feature selection methods
integrated with various classifiers. Therefore, this study aims
to fill this gap by performing a comparative analysis of
different metaheuristic and machine learning algorithm
combinations to identify the most effective pairing for
diabetes disease classification.

2 METHOD

The flowchart delineates a feature selection process
employing metaheuristic algorithms, shown in Fig. 2. The
general phase of the flowchart is dataset acquisition (PIMA,
Early Stage, and Vanderbilt), followed by dataset
preprocessing, and then proceeds to feature selection with ten
metaheuristic algorithms. The next phase after the feature
selection is ML modeling which uses five ML algorithms. The
last is model evaluation.

2.1 Dataset

This study uses three diabetes datasets with binary labels
(diabetes or non-diabetes) for classification. Based on Table
1, the first dataset is the Pima Indians Diabetes Dataset
(PIMA or PIDD), which is publicly available through the UCI
Machine Learning Repository. It comprises 768 records and
8 numerical attributes related to diagnostic measurements of
Pima Indian women aged 21 and older. The second dataset is
the Early-stage Diabetes Risk Prediction Dataset, obtained
from Kaggle, which contains 520 samples and 16 attributes
capturing various symptoms and risk factors such as polyuria,
polydipsia, and sudden weight loss. The third dataset is
initially developed by the Biostatistics Program at VVanderbilt
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University. The data was gathered through a survey involving
several hundred rural African-American patients, focusing on
various diagnostic parameters.

The three datasets are open and public datasets and are
often used in research experiments. The inclusion of these
three datasets ensures that the proposed approach is tested on
data with varying characteristics, enhancing the
generalizability and robustness of the study findings. Each
dataset was split into training, validation, and testing sets in
the following proportions: 80% training, and 20% testing.

2.2  Dataset Preprocessing

Data pre-processing is a crucial step to optimize model
performance. Fig. 3 shows the process of pre-processing data
in this research.

Data pre-processing begins with data cleaning for the
PIMA, Early Stage, and Vanderbilt datasets. At this stage,
outlier handling is carried out to ensure the absence of outlier
data and that the data is normally distributed using the
Interquartile Range (IQR). Furthermore, in the dataset,
missing value handling is also carried out by filling the value
using the Median if the data is not evenly distributed (there is
skewness) and using the Mean when the data is normally
distributed. The last cleaning stage is to perform data encoding
and transformation of string data to numeric. After performing
the data cleaning process, the resulting data features are then
moved on to the feature selection stage using the wrapper
method. Ten metaheuristic algorithms are used for feature
selection, and the KNN algorithm aims to evaluate the
performance of the selected feature subset in terms of
predictive ability, which is then used to inform the objective
function that aims to select the optimal features. After
selecting the best features, they are then substituted into the
ML algorithm as a combination of metaheuristics, and finally,
the algorithm is evaluated for performance.
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Figure 1. The hierarchy of feature selection algorithms [11]
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Table 1. Dataset Description

Dataset Feature Instance Source

PIMA 9 768 [16]
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Early Stage 16 520 [17]

Vanderbilt 16 390 [18]

Pre-processing

Train Test Split

20% Train Data

80% Train Data

5-Cross Validation

Feature Selection :
firefly algorithm, flower pollination
algorithm, salp swarm algorithm, genetic
algorithm, jaya algorithm, particle swarm
optimization, cuckoo search, grey wolf
optimization, sine cosine algorithm

The Best Feature
Subset

Trained Model

> Testing

Figure 2. Research flowchart
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Figure 3. Data pre-processing phase

2.3 Feature Selection Using Metaheuristic Algorithm

Feature selection is a technique that identifies a subset of
input features to improve or maintain classification accuracy.
It can be categorized into filter and wrapper approaches. Filter
methods rely on statistical, information theory, distance
measurements, and intrinsic data characteristics to evaluate
features. In contrast, wrapper methods evaluate the best
combination of features by optimizing classification
performance using a specific learning algorithm [19]. While
filter methods are more general and do not involve a specific
learning algorithm, wrapper methods can always achieve
better classification results, making them a primary focus of
research in feature selection. Metaheuristic algorithms are a
type of wrapper method used for optimization and feature
selection problems. They are derivative-free techniques that
start by generating random solutions and do not require
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calculating the derivative of the search space, unlike gradient
search techniques. These algorithms are characterized by their
simplicity, flexibility, and ability to avoid local optima. Thus,
this study focuses on wrapper feature selection.

This study employs ten different metaheuristic
algorithms. These algorithms were selected based on their
popularity, diversity, and proven effectiveness in solving
high-dimensional optimization problems. Each algorithm
offers a unique strategy inspired by biological, physical, or
social processes, providing a broad spectrum of exploration
and exploitation behaviours in the search space. Using a wide
variety of algorithms enables a comprehensive evaluation of
how different feature selection strategies affect classification
performance in diabetes datasets, where the presence of
irrelevant or redundant features can reduce model accuracy
and interpretability.

After selecting the most relevant features using each
metaheuristic algorithm, five classification algorithms, such as
Support Vector Machine (SVM), k-Nearest Neighbors (k-
NN), Random Forest (RF), Naive Bayes (NB), and Decision
Tree (DT), are used individually. Each classifier is applied to
the feature set chosen by one metaheuristic algorithm. This
approach ensures a clear and systematic assessment of how
well each combination of feature selection and classification
performs. The decision to evaluate classifiers separately rather
than combining multiple feature selection techniques or
classifiers was made to isolate the impact of each method.
Using them together could obscure the contribution of
individual algorithms and introduce complexity without clear
interpretive benefits. This separation provides more precise
insights into which metaheuristic—classifier pairings are most
effective for diabetes classification across different datasets.
2.3.1  Firefly Algorithm (FA): The standard FA algorithm
generates new solutions based on attractiveness,
where fireflies move towards more attractive,
brighter fireflies. This movement is determined by a
randomization parameter o, which controls the
randomness of the attraction. The movement is
oriented toward the optimal solution, and the
distance traveled is affected by the intensity of the
flash-lighting [20].

Flower Pollination Algorithm (FPA): The FPA is a
nature-inspired  algorithm that simulates the
fundamental pollination behaviour of flowers. Four
rules are conceptualized in an idealized manner. The
first rule of global pollination involves the
interaction of living organisms and the transfer of
pollen through cross-pollination, facilitated by a
pollinating agent that follows a Lévy flight pattern.
Rule 2 mandates the occurrence of abiotic and self-
pollination to facilitate local pollination. Rule 3
states that the floral constant represents the

2.3.2

likelihood of reproduction, which is directly related
to the similarity between two flowers. Rule 4
pertains to the exchange probability, denoted as p,
which ranges from 0 to 1. This probability can be
influenced by external factors, such as wind, that
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affect the transfer of pollen between local and global
populations. Indigenous pollination contributed
significantly to the overall pollination activity [21].
Salp Swarm Algorithm (SSA): SSA is a randomized
population-based algorithm that replicates the
swarming behaviour of salps during their search for
food in the water. Salps typically form a collective
group called a salp chain in turbulent seas. In the
SSA algorithm, the leader is the salp located at the
front of the chain, while the remaining salps are
referred to as followers. Similar to previous swarm-
based methods, the location of salps is determined
within an s-dimensional search space, where s
represents the number of variables in a given
problem [22].

Jaya Algorithm (JA): The Jaya optimization
algorithm is utilized to address issues related to
properly tuning algorithm-specific parameters,
which are crucial for optimizing solutions and
avoiding local optima. It is particularly valuable in
designing an optimal subset of features to enhance
classification performance [23].

Genetic Algorithm (GA): The GA derives inspiration
from the process of biological evolution. Mutation
and crossover are widely employed operators in
genetic algorithms. Mutation and crossover are
widely employed genetic algorithm operators.
Mutation operates on an individual solution and
often modifies a characteristic randomly or based on
a predetermined criterion. Crossover, however,
employs two parent solutions to generate two
offspring, leading to the creation of novel and
enhanced solutions. Typically, the mathematical
model relies on an initial population of n individuals
represented by chromosomes. Each iteration from a
maximum number of t epochs consists of three
operations: reproduction, mutation, and selection.
The fittest individuals, as determined by the fitness
function, are considered the solution to the given
problem after the algorithm [24].

Particle Swarm Optimization (PSO): The PSO was
initially introduced by Kennedy and Eberhart [25] as
a method for addressing binary optimization
challenges. In the PSO algorithm, the collective
group of individuals is referred to as a swarm. This
swarm consists of N particles that navigate across a
search space with many dimensions. The particle
symbolizes the prospective solution and traverses
the search space to locate the optimal answer. Each
particle autonomously seeks the global maximum or
minimum based on its own accumulated experience
and knowledge [26].

Bat Algorithm (BA): The BA was formulated by
relying oninspiration from the echolocation
behavior exhibited by bats. Within the context of
BA, an artificial bat possesses vectors representing
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its position, velocity, and frequency. These vectors
are continually updated over the iterations. The
artificial bats navigate the search space by utilizing
location and velocity vectors within the continuous
real domain [27].

Cuckoo Search (CS): The CS algorithm is inspired
by the obligate brood parasitism of the cuckoo,
where it lays its eggs in the nests of smaller birds,
such as starlings. Upon the hatching of the egg, the
starling assumes the role of caretaker for the cuckoo
chick, treating it as if it were its biological offspring.
As the cuckoo chick grows larger than the other
chicks in the nest, it dominates and displaces them,
ultimately leading to their complete expulsion from
the nest. Each individual in this population is
represented by a "nest," and each "egg" in the nest
symbolizes a potential solution. The term "cuckoo
eggs" is used to denote new solutions that are
introduced into the population. As suggested by
Levy, the replacement of a better solution with a bad
solution is proposed [28].

Grey Wolf Optimization (GWO): The GWO is
influenced by the guidance and hunting behavior
exhibited by packs of grey wolves. In every
population of grey wolves, there exists a reciprocal
hierarchy that determines the dominance and
authority. The alpha wolf, who leads the entire pack,
is the most influential in hunting, feeding, and
migrating. The beta wolf, being the second most
powerful, assumes leadership in the event of the
alpha's death or illness. Alpha and beta have greater
influence than omega and delta. The GWO
algorithm draws its main inspiration from this
particular form of social intelligence [29].

Sine Cosine Algorithm (SCA): During the initial
phase of optimization utilizing the SCA in feature
selection, the SCA will randomly choose various
sets of features from the original feature set to
produce population group feature subsets. Next, the
evaluation function is used to score each feature
subset, and the feature subset with the highest score
is identified as the optimal feature subset.
Subsequently, the feature subsets that have been
initialized are disrupted to generate new feature
subsets with a specified number of points.
Furthermore, an assessment function is employed to
evaluate the score of each newly generated subset of
features. The subset with the highest score is then
compared to the best subset of features from the
previous round to determine the current optimal
subset of features. This process is repeated to acquire
the optimal subset of features following the
maximum number of repetitions. An essential aspect
of the SCA feature selection process is that the
optimization approach employed by the SCA has an
impact on the variety of feature subsets [29].
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Machine Learning Model
This research focuses on five ML classifiers: KNN,

SVM, NB, DT, and LR. These models are simple and non-

parametric,

making them adaptable to various data

distributions. SVM offers high accuracy and robustness in
high-dimensional spaces. NB is computationally efficient and
provides a probabilistic framework, while DT is easy to
interpret and captures non-linear relationships. LR, known for
its simplicity and clear probabilistic outputs, is a strong
baseline model. These algorithms balance complexity and
usability, making them suitable for robust diabetes prediction
and insights into risk factors [30] [31].

24.1

2.4.2

2.4.3

2.4.4

2.4.5

K-Nearest Neighbors (KNN): The KNN technique is
a classification approach that assigns data objects to
classes based on their shortest distance. The
selection of the optimal K value for this algorithm
relies on the analysis of the available data. A higher
value of K can mitigate the impact of noise on
classification, but it can also result in more indistinct
boundaries between different classifications. This
approach employs an appropriate distance metric to
categorize novel data. The value of the nearest
neighbor distance K is computed, and the anticipated
class label of the nearest neighbor is assigned as the
class label of the new instance.

Support Vector Machine (SVM): The origins of
SVM can be traced back to statistical learning
theory. As a classification task, it searches for the
most effective decision boundary (hyperplane) that
separates the instances of one class from another.
The SVM is a fundamental type of supervised
classifier that aims to maximize the margin to
achieve optimal generalization. It effectively
addresses the issues of overfitting and underfitting
by utilizing different kernel functions that facilitate
nonlinear separation [32].

Naive Bayes (NB): The NB is a highly successful
and efficient algorithm for inductive learning in ML
and data mining. Despite relying on attribute
independence, NB exhibits competitive solid
performance in the classification process. The
assumption of attribute independence in accurate
data is uncommon. However, even if this
assumption is violated, empirical investigations
have shown that the performance of NB
classification remains relatively high [33].

Decision Tree (DT): DT is a predictive model that
utilizes a tree or hierarchical structure. The purpose
of decision trees is to convert data into decision trees
and decision rules. The primary advantage is the
ability to decompose intricate decision-making
processes into more manageable ones, hence
facilitating the identification of solutions to current
issues for decision-makers [34].

Logistic Regression (LR): LR is a type of supervised
ML classifier that calculates real-valued features
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from the input data. It then multiplies each feature
by a weight, adds them together, and applies a
sigmoid function to the result to get a probability. A
threshold is employed to determine a course of
action [35].

2.5 Model Evaluation

The model evaluation is conducted after the integration
of ML algorithms. The system utilizing the classification
procedure is anticipated to classify all of the data accurately.
The measures employed for model validation in this study are
accuracy and precision. Accuracy refers to correctly identified
instances of the total number of cases, whereas precision refers
to the proportion of cases with positive outcomes. In this
study, the dataset was split into 80% training and 20% testing
using stratified sampling to maintain class distribution.
Additionally, we employed k-fold cross-validation (k=5) to
validate model performance across different splits, avoid
overfitting and to ensure robust evaluation across cross-
validation, computing accuracy, F1-score, and precision for
each model.

In this analysis, the ML models use the following
hyperparameter which were determined based on prior
research and grid search tuning.

- KNN: n_neighbors = 12

- SVM: kernel="rbf’

- NB: var_smoothing = 1e-09

- DT: criterion="entropy’, max_depth=3,
max_leaf _nodes=5, min_samples_split =2

- LR: C=0.0001, penalty="1L2;

Table 2. Metaheuristic Algorithm’s Parameter

Algorithms Hyperparameter Values
ub =1
Ib =0
thres = 0.5
FA alpha =1
beta0 =1
gamma =1
theta = 0.97
ub =1
Ib =0
FPA thres = 0.5
beta =15
P =08
ub =1
SSA Ib =0
thres=0.5
ub =1
JA Ib =0
thres = 0.5
ub =1
Ib =0
GA thres =0.5
CR =0.8 # crossover rate
MR =0.01 # mutation rate
ub =1
PSO b =0
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thres = 0.5
w  =0.9 #inertiaweight
2 #acceleration factor
2 # acceleration factor
ub =1
Ib =0
thres = 0.5
fmax =2 # maximum frequency
BA fmin =0  # minimum frequency
alpha =0.9 # constant
gamma =0.9 # constant
A max =2  #maximum loudness
r0 max=1 # maximum pulse rate
ub =1
Ib =0
thres = 0.5
Pa =0.25 #discovery rate
alpha =1 # constant
beta =15 #levy component
ub =1
GWO Ib =0
thres = 0.5
ub =1
Ib =0
thres = 0.5
alpha=2  # constant

cl
c2

CS

SCA

Feature selection is a crucial step in improving model
performance by identifying the most relevant features while
reducing dimensionality. In this study, we employed various
metaheuristic algorithms to optimize the selection process.
The effectiveness of these algorithms depends on properly
tuning their hyperparameters. Table 2 presents the
hyperparameters used for various metaheuristic algorithms
applied in feature selection experiments. These algorithms are
designed to optimize the selection of relevant features by
exploring the search space efficiently. Each algorithm
operates within predefined upper (ub = 1) and lower (Ib = 0)
bounds, ensuring that the selected features are appropriately
constrained. Additionally, most algorithms utilize a threshold
(thres = 0.5) to determine feature inclusion. To evaluate the
significance, this study utilized the Wilcoxon signed-rank test
data validation method and the Metaheuristic Algorithm
learning curve.

In this work, the fitness value is utilized as the validation
parameter for the metaheuristic algorithm. An optimal fitness
value is characterized by its capacity to optimize algorithm
performance while minimizing the number of features rather
than solely relying on accuracy as a performance metric. The
metaheuristic algorithm will undergo thirty iterations to
evaluate its performance during the feature selection stage.
Subsequently, the algorithm will be evaluated based on the
average fitness value, convergence curve, and Wilcoxon
score. A lower fitness value indicates superior algorithm
performance. An exemplary method is characterized by rapid
convergence and the ability to avoid becoming trapped in the
optimal position. The convergence curve illustrates this.
Furthermore, the Wilcoxon value can be employed with a
significance level (o) of 0.05 to determine the statistical
significance of performance comparisons among various
metaheuristic algorithms. A Wilcoxon p-value greater than
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0.05 suggests that there is no statistically significant difference
between a specific algorithm and the other combination of
algorithms.

3 RESULT AND DISCUSSION

Accuracy and Precision

PIMA, Early Stage, and Vanderbilt were the three main
datasets used to train a combination model using
Metaheuristic and ML techniques. Table 3 shows the average
of 30 accuracy model combinations, and Table 4 shows the
average of 30 precision model combinations. The best
performance of average accuracy and precision is written in
bold. While using the PIMA dataset, the FA-LR, BA-LR, and
CS-LR combination gets the highest average accuracy of
74.71% compared to FPA, which only gets 73.34%, and SSA-
LR with an accuracy of 71.42. Then, the average accuracy
value of the JA algorithm in combination with LR is 74.39%,
which is the highest value among the other five ML algorithm
combinations. Furthermore, GA-NB data gets an average
accuracy of 74.06%, the best accuracy of the Genetic
Algorithm. Next, PSO gets the best average accuracy of
74.69% with a combination of ML Naive Bayes Classifier
algorithms. The BA implementation gets the average result of
the BA-LR algorithm with an accuracy of 74.71%, the same
as CS-LR. In the implementation of the GWO algorithm
combination, the highest average accuracy obtained is GWO-
LR with an average of 74.01%. Finally, SCA-NB became the
algorithm combination model with the best average accuracy
of 74.38%.

From Fig. 4, the SSA-SVM combination has the lowest
value among the other ten algorithm combinations, with a
value of 66.87%. In addition, the precision value by CS-SVM
and SCA-SVM is the same precision value, which is 70.94%.
Then, the top three algorithm combinations are BA-LR with
an average precision value of 74.71%, followed by FPA-

3.1
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SVM with a value of 73.34%, and FA-DT with a value of
72.57%. Since the BA-LR combination has the highest
average precision value on the PIMA dataset, it is the
recommended algorithm.

The comparison of the best-performing algorithm using
the Early-Stage dataset is illustrated in Fig. 5. The graph
shows that the FA-SVM combination achieves an average
accuracy of 83.39%, outperforming other algorithm
combinations within the FA category. The highest average
precision is also attained by the FA-SVM algorithm,
achieving 96.15%, which is superior to the FA-NB category.
Next, the FPA achieves the best average accuracy with the
FPA-LR combination, at 74.91%, whereas the highest
average precision is observed in the FPA-DT combination, at
83.29%. In the SSA category, the SSA-SVM combination
demonstrates the best average accuracy of 74.48%, while the
SSA-NB combination achieves an average precision of
85.01%. In the JA, both the average accuracy and precision
peaks are found in the JA-SVM combination, with values of
82.90% and 95.68%, respectively. The GA performs best,
achieving an average accuracy of 81.71% in the GA-SVM
combination, with the highest average precision of 95.68%.
Within the Particle Swarm Optimization framework, PSO-
NB achieves the highest average accuracy at 80.07%.

Simultaneously, it also secures the best average precision
of 92.37%. For the Bat Algorithm, the combination BA-LR
achieves an accuracy of 78.07% and a precision of 92.54%.
Cuckoo Search achieves an accuracy of 83.39% in the CS-
NB combination and a precision of 96.15%. Grey Wolf
Optimization attains its best average accuracy and precision
in the GWO-SVM combination, recording values of 82.62%
and 92.87%, respectively. Lastly, the Sine Cosine Algorithm
achieves the highest average accuracy of 81.92% in the SCA-
NB combination and an average precision of 95.62% in the
SCA-SVM combination.
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Fig. 6 also presents the best of the average accuracy and
average precision results using the Vanderbilt dataset. The
FA-KNN combination achieves the highest average accuracy
at 92.64%, while FA-NB attains an average precision of
94.12%. In comparison, for the Flower Pollination
Algorithm, the FPA-SVM combination secures the best
average accuracy of 87.37% and an average precision of
87.79%. Similarly, the SSA obtains its highest accuracy in the
SSA-LR combination at 87.79% and achieves an average
precision of 88.59% in the SSA-NB combination. In the
context of the JA, the best average accuracy and precision are
found in the JA-LR combination, yielding 92.14% accuracy
and 93.10% precision.

Furthermore, the GA delivers the best average accuracy
0f 90.94% in the GA-NB combination, with its corresponding
best average precision of 91.89% to PSO, the preferred
algorithm is PSO-SVM with an average accuracy of 90% and
an average precision of 90.87%. Conversely, within the BA
framework, BA-DT achieves the highest accuracy result of
89.94%, while its average precision on the algorithm is
91.46%. Contrasting with Cuckoo Search, the CS-NB
combination performs best, with an average accuracy of
92.12% and a precision of 93.22%. Moreover, Grey Wolf
Optimization demonstrates an algorithm achieving the

highest accuracy of 90.96% in the GWO-LR combination,
followed by the best precision of 91.86% in the GWO-KNN
combination. Lastly, the Sine Cosine Algorithm performs
best, with an accuracy of 90.50% in the SCA-LR combination
and an average precision of 91.89% in the SCA-NB
combination.

Table 5 presents a comparative analysis of various
machine learning models applied to the PIMA, Early Stage,
and Vanderbilt datasets, demonstrating that our proposed
models consistently outperform conventional methods in both
accuracy and precision. For the PIMA dataset, prior studies
using K-Means, Decision Tree (DT), PCA + LR, and KNN
achieved accuracy rates between 67.00% and 73.00%, while
our proposed FA-LR, BA-LR, and CS-LR models surpass
them with an accuracy of 74.71% and a competitive precision
of 70.75%. In the Early-Stage dataset, traditional models such
as Multilayer Perceptron (MLP), Deep Neural Networks
(DNN), Logistic Regression (LR), and KNN attained
accuracy values ranging from 64.40% to 80.00%, whereas
our proposed FA-SVM model significantly outperforms them
with an outstanding accuracy of 83.39% and an exceptional
precision of 96.15%.
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Similarly, for the Vanderbilt dataset, existing
approaches, including Random Forest, LR, Stochastic
Gradient Descent (SGD), and Gradient Boosting, achieved
accuracy rates between 71.00% and 91.50%, while our
proposed FA-NB model demonstrates the highest
performance with an impressive accuracy of 92.88% and a
remarkable precision of 94.14%. These results highlight the
clear advantage of our metaheuristic-based feature selection
techniques, proving their superior effectiveness in enhancing
predictive performance across diverse datasets and complex
classification tasks.

Table 6 shows a comparison of different studies that used

Vol. 15, No. 1, June 2026, Pp.672-682
Networks, Ant Colony Optimization, and Bees Algorithm,
with accuracy results ranging from 70% to 73%. In this study,
the combination of FA-LR and Cuckoo Search and Logistic
Regression (CS-LR) achieved a higher accuracy of 74.71%
using 10-fold cross-validation. Next, for the Early-Stage
dataset, previous research tested SVM, Multilayer
Perceptron, and Naive Bayes, with accuracies between
64.40% and 76.60%. The method proposed in this study,
Firefly Algorithm with SVM (FA-SVM) and Cuckoo Search
with Naive Bayes (CS-NB), improved the accuracy to
83.92%, also using 10-fold cross-validation. On the
Vanderbilt dataset, other studies reached up to 92.5%
accuracy using traditional methods like Logistic Regression

various methods and validation techniques to predict diabetes
using the PIMA, Early-Stage, and Vanderbilt datasets. It
includes the method used in each study, the validation
approach, and the accuracy achieved. For the PIMA dataset,
past studies applied algorithms like Firefly-Bat Neural

and Decision Trees. However, the current study’s approach
using the Firefly Algorithm with Naive Bayes (FA-SVM)
achieved the highest accuracy of 92.98% with 10-fold cross-
validation.

Table 3 Classification Accuracy (%) of Ten Metaheuristic Algorithms of Five Classifiers for Three Datasets

Dataset ML Metaheuristic Algorithm
Algorithm FA FPA SSA JA GA PSO BA CS GWO SCA
KNN 72.826 71.181 70.186 71.636 71.980 72.339 72.339 72.320 71.967 72.320
SVM 74.392 73.349 71.567 73.372 73.902 73.588 74.160 73.489 73.097 73.489
PIMA NB 74.696 73.173 70.108 73.893 74.062 74.696 74.696 74.019 74.019 74.380
DT 72.904 71.432 70.277 72.727 72.140 72.123 72.904 72.121 72.675 72.121
LR 74.718 72.562 71.424 74.393 73.997 73.688 74.718 74.718 73.616 73.917
KNN 82.464 71.303 72.875 82.140 79.666 75.732 76.408 81.594 81.630 81.578
SVM 83.392 73.774 74.483 82.905 81.712 77.816 78.120 82.297 82.624 81.686
Early-Stage NB 83.274 71.058 72.486 81.633 78.705 80.075 78.800 83.392 79.382 81.924
DT 82.496 73.163 72.401 82.676 79.601 75.287 77.535 82.058 81.950 80.431
LR 82.535 74.911 72.284 81.526 80.415 73.601 79.078 81.964 80.748 81.359
KNN 89.636 85.286 84.123 89.166 88.717 88.149 88.004 90.038 89.029 87.867
SVM 92.649 87.376 86.064 90.102 90.465 90 89.940 91.910 90.551 90.153
Vanderbilt NB 92.888 86.876 87.470 91.675 90.948 89.764 89.376 92.128 90.149 90.940
DT 87.025 82.363 78.465 86.235 86.290 84.294 89.406 86.085 85.807 85.893
LR 92.696 86.897 87.799 92.149 90.282 89.388 89.406 92.085 90.965 90.500
Table 4. Classification Precision (%) of Ten Metaheuristic Algorithms by Five Classifiers for Three Datasets
Dataset ML Metaheuristic Algorithm
Algorithm FA FPA SSA JA GA PSO BA CS GWO SCA
KNN 68.377 65.117 62.371 66.364 67.173 68.019 68.019 67.964 67.121 67.964
SVM 72.399 70.580 66.870 70.545 71.827 71.083 72.399 70.948 68.335 70.948
PIMA NB 70.338 67.787 61.128 68.834 69.104 70.338 70.338 68.834 68.834 69.677
DT 72.577 68.133 62.052 71.959 69.979 70.093 72.577 69.200 71.892 69.2
LR 70.759 63.634 50.192 69.941 68.870 64.258 70.759 70.759 67.886 68.556
KNN 95.116 81.455 82.222 94.980 92.517 88.359 88.600 94.478 94.791 94.579
SVM 96.155 82.980 84.392 96.242 95.685 90.504 92.543 95.921 95,879 95,629
Early-Stage NB 96.153 83.202 85.013 93.876 92.357 92.379 92.208 96.155 92,802 95,084
DT 95.867 83.290 79.513 95.936 92.415 87.326 89.726 95.923 95.817 93.966
LR 95.016 82.650 77.729 94.598 93.519 83.669 91.526 95.436 94.212 93.875
KNN 92.491 87.833 86.839 92.081 91.383 90.859 90.640 93.041 91.869 90.625
SVM 93.943 87.796 86.308 90.959 91.449 90.879 90.779 93,070 91.472 91.104
Vanderbilt NB 94.124 87.598 88.592 92.850 91.898 90.707 90.228 93.221 90.955 91.893
DT 92.292 87.525 86.858 91.423 91.164 89.505 91.465 91.318 90.737 90.355
LR 93.745 87.388 88.392 93.105 91.055 90.127 90.022 93.063 91.745 91.275
Table 5. Comparative Similar Study Showing Accuracy and Precision
Dataset Study Method Accuracy Precision
[36] K-Means 67.00% N/A
PIMA [37] DT 71.35% N/A
[38] PCA +LR 72.70% 64.30%
[39] KNN 73.00% 87.00%
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This Study Proposed FA-LR, BA-LR, and CS-LR 74.71% 70.75%
[40] Multilayer Perceptron 64.40% 64.40%
[41] Deep Neural Network 78.00% N/A
Early Stage [42] LR 78.00% N/A
[43] KNN 80.00% 81.20%
This Study Proposed FA-SVM 83.39% 96.15%
[44] Random Forest 71.00% 78.00%
[45] LR 89.00% N/A
Vanderbilt [46] Stochastic Gradient Descent 90.68% N/A
[47] Gradient Boosting 91.50% N/A
This Study Proposed FA-NB 92.88% 94.14%
Table 6. Comparative Study of the Method Used and the Validation Method
Dataset Study Method Validation Method Accuracy
Hybrid Firefly-Bat Optimized -~
[48] Fuzzy Artificial Neural Network 10-Fold Cross Validation 70%
[15] Ant Colony Optimization (ACO) K-Fold Cross Validation 71%
. . DT =70.80%
[49] ?:j‘i‘g:ggg”thm DT, SVM Train_test_split 70%: 30% SVM = 66.50%
AB =71.00%
PIMA [50] Multi-Objective Bees Algorithm 10-Fold Cross Validation 72%
Binary Wheal Optimization
[51] Algorithm (BWOA)-KNearest K-Fold Cross Validation 73%
Neighbors
Firefly Algorithm-Logistic
. Regression (FA-LR) and ) A o
This Study Cuckoo Search-Logistic 10-Fold Cross Validation 74.7186%
Regression (CS-LR)
[52] SVM K-Fold Cross Validation 66.56%
[40] Multilayer Perceptron 10-Fold Cross Validation 64.40%
[53] Naive Bayes Cross-Validation 76.60%
[54] SVM Train_test_split 60: 40% 62%
) Firefly Algorithm-Support
Barly-Stage Vector Machine Classifier (FA-
This Study SVM) 10-Fold Cross Validation 83.392%
Cuckoo Search-Naive Bayes
(CS-NB)
[55] Univariate Feature Selection LR 10-Fold Cross Validation 88.89%
Adaptive Synthetic Sampling- : A o
[56] KNN (ADASYN-AIIKNN) 10-Fold Cross Validation 89.80%
Vanderbil [57] Senetic Algorftim- Decision Train Test Split 80:20 90.06%
[58] Quadratic Discriminant Analysis 10-Fold Cross Validation 85.91%
[59] Logistic Regression Train Test Split 70%: 30% 92.5%
This Study Firefly Algorithm-Naive Bayes 10-Fold Cross Validation 92.88%

(FA-NB)

3.2 Best Fitness and Wilcoxon Test

The data in Table 7 are performance results measured by
best fitness and Wilcoxon Signed-Rank test values to test
statistical significance (a). This test uses the p-value, which
is above 0.05, meaning that the algorithm combination has no
significance, and the model performance is not much
different from other models. This study proposes the FA-LR
algorithm on the PIMA CS-NB dataset on the Early-Stage
dataset, and FA-NB on the Vanderbilt dataset, which is
marked as “- to calculate statistical significance because it
has the highest accuracy.

In using the PIMA dataset, the best fitness obtained from
the experimental results is 0.12641, which is the smallest
value in fitness value acquisition. The model evaluation
metric is to use the Wilcoxon Signed-Rank test to test

statistical significance (). This test uses the p-value, which
is above 0.05, meaning that the algorithm combination has no
significance, and the model performance is not much
different from other models. The algorithm combinations that
are the reducing factor in the Wilcoxon test are the FA-LR,
BA-LR, and CS-LR algorithms. Algorithms that do not have
statistical significance are shown in FA-NB, FPA-LR, JA-
NB, JA-LR, GA-LR, PSO-NB, PSO-LR, BA-NB, CS-NB,
GWO-NB, GWO-LR, SCA-NB, and SCA-LR.

In the Early-Stage dataset, the optimal fitness value of
0.06344 is achieved by utilizing different algorithm
combinations. Specifically, the FA yields the best results with
the FA-SVM, FA-NB, and FA-KNN combinations. The FPA
performs well with the FPA-SVM, FPA-DT, and FPA-LR
combinations. The SSA produces favorable outcomes with
the SSA-DT combination. The JA demonstrates good
performance with the JA-NB combination. Lastly, the PSO
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algorithm achieves satisfactory results with the PSO-NB
combination. The combinations of BA-KNN, BA-SVM, and
BA-DT, along with the BA, yielded the highest performance.

Additionally, the combination GWO-SVM, using the
GWO algorithm, and the combination SCA-NB, using the
SCA, also achieved excellent results. Then, in the Wilcoxon
Test results, the FA-NB, FA-DT, and FA-LR combinations
have no significance against FA-SVM or CS-NB in the FA
category. In the FPA category, only the FPA-LR combination
is of statistical importance with a value of 0.0002624.

Furthermore, in SSA, SSA-KNN and SSA-VM are
algorithms with statistical significance. In contrast to JA, only
the JA-NB and JA-DT combinations do not have any
significance. Similarly, other algorithm combinations that do
not have significance against FA-SVM and CS-NB
algorithms include PSO-KNN and PSO-SVM. While
utilizing the Vanderbilt dataset, the minimum iteration in the
combination of the FA, JA, and SCA offers the optimal
fitness point of 0.0672. On the other hand, the SSA-DT
combination obtains the highest fitness value, which equals
0.1335. According to the Wilcoxon test, the Firefly
Algorithm demonstrates statistical significance in the FA-
SVM and FA-LR combinations. The FPA-NB and FPA-LR
combinations have insignificant values of 0.297 and 0.3660,
respectively. The SSA demonstrates relevance solely in the
SSA-KNN combination, with a precise value of 0.00665. The
Jaya Algorithm yielded noteworthy combinations of JA-SVM
and JA-NB compared to JA-LR.

The combination of GA-KNN and GA-NB demonstrates
a notable advantage over GA-SVM in the context of GA. The
PSO-KNN combination presents the lowest level of
importance compared to PSO-SVM in PSO. The BA had a
notable impact on the combination of BA-DT. The CS
demonstrates notable improvements in CS-KNN and CS-LR
compared to CS-NB. In the Wilcoxon Test value, FA only has
a significant value in the combination of FA-SVM and FA-
LR. Next, only FPA-SVM is the algorithm combination with
a significance value of 0.000305. SSA has no algorithm that
has significance.

Vol. 15, No. 1, June 2026, Pp.672-682
Furthermore, JA obtained JA-NB, which became a
significant algorithm against FA-NB. Next, GA obtained the
GA- GA-NB combination. Unlike PSO, only the PSO-NB
combination is significant. Similarly, BA with BA-NB is a
significant algorithm. Then, CS obtained CS-SVM as a
combination, which was significant against FA-NB. Then, in
GWO, only the GWO-NB combination has a significant
value. Finally, SCA only obtains SCA-NB with a
combination of algorithms with significance. From the results
of the analysis, it can be seen that the combination of
metaheuristic algorithms using NB and SVM is statistically
significant against FA-NB.

3.3  Convergence Curve

Table 8 demonstrates that each of the five combinations of
the FA consistently attained the global optimum on the PIMA
dataset, with a fitness value of 0.1264 being the most optimal.
FA-LR, FA-SVM, and FA-NB rapidly reached convergence,
while FA-NB had an initial value of 0.2512. Next, the JA and
PSO exhibited parallel patterns, with JA-DT commencing at
0.2511, while JA-KNN, JA-SVM, JA-NB, and JA-LR
attained the optimal fitness value of 0.0634. PSO-DT and
PSO-NB commenced at 0.2500 and 0.2506, respectively, but
PSO-KNN, PSO-SVM, and PSO-LR initiated at 0.1264. The
GWO algorithm demonstrated that GWO-DT and GW-NB
initially had values that were not optimal, whereas GWO-
KNN, GWO-SVM, and GWO-LR quickly achieved the
optimal values.

Besides, the SCA shows excellent performance, especially
when used with SCA-SVM, SCA-LR, and SCA-DT. The
combinations of BA-DT and BA-LR quickly and effectively
reached the global optimum. The global optimum was swiftly
achieved only by using the CS-LR. The SSA and GA showed
initial differences, with SSA-KNN starting at 0.3735 and GA-
LR at 0.3734. However, all combinations of the ten algorithms
finally reached the global optimum of 0.1264 without
premature convergence

Table 7. Best Fitness and the Wilcoxon Test for Each Combined Algorithm

Best Fitness

Wilcoxon Test

Combined Algorithm

PIMA Early Stage Vanderbilt PIMA Early Stage Vanderbilt
FA-KNN 0.126412338 0.0634436 0.0672821 1.86265E-09 0.003314453 1.86E+06
FA-SVM 0.126607143 0.0634436 0.0672821 3.85624E-06 - 0.000305511
FA-NB 0.126412338 0.0634436 0.0672821 0.309023385 0.317310508 -
FA-DT 0.126607143 0.0647181 0.0672821 1.86265E-09 0.067889155 1.86E+06
FA-LR 0.126607143 0.0634436 0.0672821 - 0.179712495 0.000112725
FPA-KNN 0.126412338 0,0665809 0.1330256 1.86E+06 2.91E+11 0.034536734
FPA-SVM 0.126412338 0.0634436 0.0721538 0.000152871 3.54E+08 -
FPA-NB 0.126412338 0.0650123 0.1328974 0.013208347 3.23E+10 0.297734257
FPA-DT 0.126412338 0.0634436 0.0675385 1.86E+06 1.23E+11 0.000441624
FPA-LR 0.126412338 0.0634436 0.1327692 0.670180589 0.00026245 0.366010269
SSA-KNN 0.126412338 0.1251225 0.1337949 1.86E+06 0.000345249 0.006650218
SSA-SVM 0.126412338 0.0656985 0.0679231 3.70E+08 0.000257131 0.492496412
SSA-NB 0.126996753 0.0638358 0.0672821 0.000141032 1.90E+11 -
SSA-DT 0.126412338 0.0634436 0.1335385 1.86E+06 2.62E+11 1.30E+07
SSA-LR 0.126996753 0.0647181 0.1330256 0.005033508 5.50E+10 0.715132967
JA-KNN 0.126412338 0.0634436 0.0672821 1.86E+06 0.00146885 1.42E+10
JA-SVM 0.126412338 0.0634436 0.0672821 3.87E+09 0.043114447 0.022600679
JA-NB 0.126412338 0.0634436 0.0672821 0.18204979 0.067889155 0.049282444
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Combined Algorithm Best Fitness Wilcoxon Test
PIMA Early Stage Vanderbilt PIMA Early Stage Vanderbilt
JA-DT 0.126412338 0.0634436 0.0672821 1.86E+06 0.10880943 1.86E+06
JA-LR 0.126412338 0.0638358 0.0672821 0.317310508 0.027707849 -
GA-KNN 0.126412338 0.0638358 0.0672821 1.86E+06 0.000293053 0.044907209
GA-SVM 0.126412338 0.0634436 0.0672821 1.30E+06 0.007685794 -
GA-NB 0.126412338 0.0638358 0.0672821 0.058997545 0,002217721 0.037783417
GA-DT 0.126412338 0.0649142 0.0675385 1.86E+06 0.005062032 1.60E+10
GA-LR 0.126412338 0.0638358 0.0675385 0.179712495 0.007685794 0.837257554
PSO-KNN 0.126412338 0.0634436 0.0672821 1.86E+06 2.70E+11 0.026630168
PSO-SVM 0.126996753 0.0638358 0.0672821 3.13E+10 7.99E+09 -
PSO-NB 0.126412338 0.0634436 0.0672821 0.309023385 0.007685794 0.852549787
PSO-DT 0.126412338 0.0634436 0.0680513 1.86E+06 0.000654958 1.60E+10
PSO-LR 0.126412338 0.0647181 0.0679231 0.10880943 0.000293053 0.779721214
BA-KNN 0.126412338 0.0638358 0.0675385 1.86E+06 0.00013142 0.253436105
BA-SVM 0.126412338 0.0634436 0.0675385 3.86E+09 0.000651666 0.87871595
BA-NB 0.126412338 0.0634436 0.0672821 0.309023385 0.003502272 -
BA-DT 0.126412338 0.0634436 0.0672821 1.86E+06 0.000978707 0.00171859
BA-LR 0.126412338 0.0647181 0.0672821 - 0.00146885 0.526770984
CS-KNN 0.126542208 0.0638358 0.0672821 1.86E+06 0.00220902 0.001232104
CS-SVM 0.126542208 0.0634436 0.0672821 3.86E+09 0.067889155 0.031864783
CS-NB 0.126542208 0.0628365 0.0672821 0.147378523 - -
CS-DT 0.126542208 0.0634436 0.0672821 1.86E+06 0.011718686 3.86E+08
CS-LR 0.126412338 0.0634436 0.0672821 - 0.017960478 0.01718927
GWO-KNN 0.126542208 0.0634436 0.0672821 1.86E+06 0.000437777 0.109432058
GWO-SVM 0.126542208 0.0634436 0.0672821 3.86E+09 0.067889155 0.416649397
GWO-NB 0.126542208 0.0634436 0.0672821 0.147378523 0.002183045 0.892825524
GWO-DT 0.126542208 0.0634436 0.0675385 1.86E+06 0.011718686 3.86E+08
GWO-LR 0.126542208 0.0638358 0.0675385 0.10880943 0.002217721 -
SCA-KNN 0.126542208 0.0634436 0.0672821 1.86E+06 0.00146393 0.040489722
SCA-SVM 0.126542208 0.0634436 0.0672821 3.86E+09 0.007685794 -
SCA-NB 0.127191558 0.0634436 0.0672821 0.263139822 0.027707849 0.123902137
SCA-DT 0.126542208 0.0647181 0.0672821 1.86E+06 0.007685794 4.42E+09
SCA-LR 0.126542208 0.0634436 0.0672821 0.179712495 0.017960478 0.646895924

Table 8. Convergence Curves for Each Algorithm

Alg Datasets
PIMA Early Stage Vanderbilt
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In comparison with the Early-Stage dataset, which
uses several exploration methods to locate the global
best/optimum solution. The FA-KNN combination begins
with the highest fitness value of 0.372, followed by FA-SVM,
FA-NB, and FA-LR at 0.3105. FA-DT achieves the fastest
search initiation with a time of 0.2486. All combinations
effectively reach the global optimum at 0.0634 without being
confined to local optima. Then, the FPA-LR combination
initiates at a distance of 0.31113971 and takes three
exploration steps: [0.25044, 0.1872, 0.1262] toward the
minimum fitness value. Next, the FPA-NB, FPA-DT, and
FPA-KNN models achieve a score of 0.250, while the FPA-
SVM model starts exploring the fastest with a score of
0.1872.

The FPA-KNN algorithm is the only one that becomes
stuck in a local minimum, prematurely converging at a value
of 0.1262, and so fails to find the optimal solution. The
convergence of the Salp Swarm Algorithm (SSA). The SSA-
NB algorithm commences with a value of 0.3101 and
becomes trapped in a local minimum at 0.252, which is also
the starting point for the SSA-DT and SSA-LR algorithms.
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SSA-DT reaches a value of 0.189 at iteration 6 and a value of
0.1273 at iteration 3. On the other hand, SSA-LR reaches a
value of 0.1273 at iteration 4. The SSA-KNN algorithm
commences with an initial value of 0.187 and concludes with
a final value of 0.1253. However, it fails to get the ideal
solution due to premature convergence. SSA-SVM exhibits
superior computational efficiency in identifying the optimal
fitness, commencing from the same initial point as SSA-
KNN. Only three permutations of the SSA algorithm attain
the global optimum.

The JA commences the search initially with JA-NB at a
value of 0.311, subsequently followed by JA-DT and JA-LR.
The GA ranks GA-SVM as the highest with a value of 0.371,
followed by GA-LR and GA-KNN. Among the PSO
algorithms, PSO-DT demonstrates the highest speed in
converging towards the global optimum, while PSO-NB
exhibits the slowest convergence. The BA demonstrates that
BA-LR has the highest speed, starting at 0.24887255, while
BA-KNN has the slowest performance. The CS algorithm
demonstrates that CS-NB, CS-LR, and CS-SVM are the most
efficient, while CS-DT is the slowest, starting with a value of

This article is distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

See for details: https://creativecommons.org/licenses/by-nc-nd/4.0/

678


https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/

IJID (International Journal on Informatics for Development), e-ISSN: 2549-7448

0.249. On the other hand, GWO exhibits the GWO-DT
variant with the highest initial speed of 0.1290, whereas the
SCA identifies SCA-SVM as the fastest.

Lastly, the convergence curves of various metaheuristic
algorithm combinations highlight their differing efficiencies
in reaching global optima by using the Vanderbilt dataset.
The FA combined with KNN shows the slowest start with a
fitness value of 0.3308, while FA-SVM achieves the fastest
global optimum search with a fitness value of 0.13366. Next,
FPA-DT demonstrates the farthest search point but excels in
deeper exploration, achieving a global best at 0.06753846.

Vol. 15, No. 1, June 2026, Pp.672-682
with a fitness value of 0.3307 as the farthest point, while
others like PSO-KNN, PSO-NB, and PSO-NB start at 0.2003,
with PSO-DT achieving the fastest global best. Next, BA
reveals BA-KNN as having the longest exploration process
compared to BA-SVM and BA-LR, starting at 0.2001, but all
combinations eventually achieve the global best. CS
algorithm shows CS-KNN, CS-SVM, CS-NB, and CS-LR
reaching global best fitness at 0.1992, the fastest among them,
while CS-DT starts at 0.2656, with all combinations
achieving global best. In the GWO algorithm, GWO-KNN
initiates the farthest search at 0.331, yet successfully attains

Then, the SSA shows the longest initial search distance with the global best.

SSA-KNN and SSA-NB at 0.3308, with SSA-SVM being the
fastest to reach the global best. Furthermore, the JA exhibits
the farthest convergence process with JA-DT at 0.3310,
followed by JA-SVM, JA-NB, JA-LR, and JA-KNN, all
achieving global optimum. The PSO shows only PSO-NB

Table 9. Comparison of Convergence Curves of the Top 5 Best Performing Algorithm
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Table 10. Important Features Selected for Each Algorithm

Dataset
Alg.
PIMA Early Stage Vanderbilt

FA Glucose, Insulin, BMI Polyuria, Polyphagia, Delayed Healing Glucose, HDL Chol, BMI, Waist
Gender, Polyuria, Polyphagia Glucose, HDL Chol, Gender, Height,

FPA Glucose, Insulin Genital Thrush, Visual Blurring, Weight, BMI, Systolic BP, Diastolic BP,
Delayed Healing, Partial Paresis, Muscle Stiffness Waist
Gender, Polyuria, Polydipsia, Glucose, Chol / HDL ratio

SSA Glucose, Blood Pressure, Insulin, Sudden Weight Loss, Visual Blurring, Delayed Healing,  Age, Height, BMI, Gender

Diabetes Pedigree Function, Age Partial Paresis Hip, Diastolic BP, Waist/ hip ratio,
Muscle, Stiffness, Alopecia Systolic BP
. Polyuria, Polydipsia, .
JA Glucose, Insulin Sudden Weight Loss Glucose, Height
GA Glucose, Insulin Age, Polyuria, Polydipsia Glucose, Height, Diastolic BP
Glucose, Blood Pressure, Polyuria, Sudden Weight Loss, . .

PSO Age, Insulin Visual Blurring, Irritability, Muscle Stiffness Glucose, BMI, Diastolic BP

BA Glucose, Insulin Polyuria, §udden Weight Loss, Glucose, HDL Chol, Height, Diastolic BP
Polyphagia

CS Glucose, Age Age, Polyuria, Polyphagia Glucose, Height, Diastolic BP

GWO Glucose, Blood Pressure Polyuria, Polydipsia Glucose, HDL Chol, Waist

SCA Glucose Polyuria, Polydipsia

Glucose, Height, HDL, Chol
Diastolic BP

In Table 9, which contains a comparison of the top 5 best-
performing algorithms in the convergence curve, it can be
seen that the proposed FA LR model (the same convergence
is also in BA-LR and CS-LR) on the PIMA dataset can
achieve the best fitness quickly. In contrast to the Early-Stage
dataset, in the global solution search process, the proposed
FA-SVM (which has the same performance as CS-NB)
succeeds in reaching the best solution even though it starts
from a more distant initial point compared to GWO-SVM.
Finally, in the same case as Early Stage, using the Vanderbilt
dataset, the proposed FA-NB succeeded in searching for the
global best despite initializing farther from GWO-LR.

3.4 Selected Features

The feature selection techniques utilized by the
metaheuristic algorithms consist of ten different methods,
each possessing distinct characteristics in conducting search
and feature selection. Table 10 presents the selected features
identified by each metaheuristic algorithm for each data. The
selected features, such as glucose levels, insulin levels, BMI,
and blood pressure, were chosen based on their strong
correlation with diabetes diagnosis and progression. For
instance, glucose and insulin are fundamental indicators of
diabetes, directly influencing how models differentiate
between diabetic and non-diabetic patients. Similarly,
symptoms like polyuria (excessive urination) and polydipsia
(excessive thirst) are well-known early signs of diabetes,
contributing to better sensitivity in ML models. Other
physiological markers, including blood pressure and BMI,
serve as indicators of metabolic disorders, helping the model
detect  patterns  associated  with  diabetes-related
complications. Beyond feature selection, it is important to
empirically justify their impact on model performance.
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4 CONCLUSION

This study has proposed a comprehensive comparison
of combined Metaheuristic and ML for detecting diabetes
disease. In conclusion, the BA-LR and CS-LR PIMA
achieved the highest average accuracy of 74.71% in the
PIMA dataset. The FA-SVM and CS-NB combination
achieved the highest average accuracy of 83.39% on the
Early-Stage dataset, with CS-NB having the highest precision
of 96.15%. The SSA implementation suffered from
premature convergence, causing SSA-KNN and SSA-NB to
become trapped in local optima. The algorithm with the
highest average accuracy and precision on the Vanderbilt
dataset was 94.12% and 92.64%, respectively. The
combination of FPA-KNN, SSA-KNN, and SSA-NB became
stuck in local optima. Future research should explore the
performance of the algorithms on different datasets to
determine their generalizability and robustness. Additionally,
combining metaheuristics and ML algorithms showed
promising results, and further research could investigate more
combinations and variations to find the optimal combination
for different data.
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