DOI: 10.14421/ijid.2025.5045 UID (International Journal on Informatics for Development), e-ISSN: 2549-7448
Vol. 14, No. 2, December 2025, Pp. 659-671

Implementation of Federated Learning for
Alzheimer's Disease Classification Using
FedAdagrad Algorithm

Arini Feri Fahrianto
Department of Informatics Department of Informatics
UIN Syarif Hidayatullah Jakarta UIN Syarif Hidayatullah Jakarta
South Tangerang, Indonesia South Tangerang, Indonesia

arini@uinjkt.ac.id feri.fahrianto@uinjkt.ac.id

Adil Ramadhan

Department of Informatics
UIN Syarif Hidayatullah Jakarta
South Tangerang, Indonesia
adil.ramadhan19@mbhs.uinjkt.ac.id

Avrticle History
Received February 26%, 2025
Revised July 3", 2025
Accepted July 8™, 2025
Published January 2026

Abstract— Federated Learning (FL) offers a promising solution for training machine learning models on decentralized data while
preserving privacy, making it particularly valuable for sensitive applications such as healthcare. This study implements FL for the
classification of Alzheimer’s disease using MRI images, addressing two critical challenges: data heterogeneity and class imbalance.
The research evaluates the performance of the FedAdagrad optimization algorithm against the standard FedAvg approach under
varying data distribution scenarios. The methodology employs a CNN trained on a dataset of 6,400 MR images across four severity
classes, partitioned non-TID using Dirichlet distributions (a = 0.1, 0.5, 0.9) to simulate real-world heterogeneity. Experiments were
conducted using the Flower framework with four clients over ten communication rounds. Results indicate that FedAdagrad achieves
a superior Fl-score of 50.33% compared to FedAvg’s 48.14%, though both fall short of centralized CNN performance (55%). High
data heterogeneity (a = 0.1) leads to a 13.35% accuracy decline, underscoring FL’s sensitivity to uneven data distributions. Class
imbalance emerges as the primary bottleneck, affecting all models. The findings contribute to the growing body of research on
adaptive optimization in federated settings, offering insights for future improvements in decentralized healthcare Al.

Keywords— data heterogeneity; data privacy; decentralized data; federated optimization; MRI images

IJID (International Journal on Informatics for Development), e-ISSN: 2549-7448

1 INTRODUCTION

The rapid advancement of Artificial Intelligence (Al) in
healthcare has revolutionized medical image analysis,
particularly for complex neurological disorders like
Alzheimer's disease (AD) [1], [2], [3]. However, the
traditional centralized approach to Al model development
faces significant challenges when handling sensitive medical
data due to stringent privacy regulations and ethical
constraints [4][5]. Federated Learning (FL) has emerged as a
transformative solution, enabling collaborative model
training without direct data sharing [6]. While FL has shown
promise across various domains, its application to AD
classification remains underexplored, particularly in
addressing two critical challenges: (1) performance
degradation under heterogeneous data distributions and (2)
class imbalance in diagnostic labels [7].

Data privacy issues are an obstacle to the development
process of Al and Big Data, which really requires data.
Policies and regulations, as well as ethics in the use of highly
private data such as medical data, do not allow for the
freedom of use of data [8], [9]. The need for data governance
and limitations in data access are the reasons for the
emergence of Federated Learning (FL), namely a method
where data does not require movement from local devices or
from secure data storage places, so that data movement is
minimized [6]. The way federated learning works is by
carrying out the learning process directly locally on devices
that are part of the collaboration, so that data is maintained.
The use of a decentralized process can be used to preserve
data privacy [10].

The concept of federated learning (FL) was created
because there was a need to implement artificial intelligence
technology, which was hampered by data privacy issues,
which could be a solution to privacy problems. FL has
become a commonly used solution to handle privacy cases in
Al research applications and industrial applications [11]. FL
is a system that can safely distribute machine learning
techniques to multiple devices or servers, with the condition
that private data will not leave the local location. Interaction
between the client and server occurs to exchange parameters
so that there is no transfer of training data for the machine
learning process. The server is tasked with aggregating
parameters to update the global model of the main server. The
FL scheme can realize the security protection of local user
data through interactions that are arranged so that there is no
data movement.

This study aims to develop an optimized FL framework
for AD classification using MRI scans, with three primary
objectives:

1. To evaluate the effectiveness of
optimization in medical imaging
conventional FedAvg

2. To quantify the impact of data heterogeneity and class
imbalance on FL performance

3. To establish practical benchmarks for implementing FL
in clinical AD diagnosis while maintaining data privacy

FedAdagrad
compared to

The motivation stems from the growing need for privacy-
preserving Al solutions in healthcare, where data sensitivity

@080

E MG MDD

Vol. 14, No. 2, December 2025, Pp. 659-671
often limits technological adoption [12]. Current FL
approaches face performance gaps when applied to real-
world medical datasets characterized by natural heterogeneity
and imbalance [13], creating a critical research gap that our
work addresses.

Our research makes three significant contributions to the
field. Algorithmic Innovation: We present the first
comprehensive evaluation of FedAdagrad for medical image
classification, demonstrating a 4.55% improvement in F1-
score over FedAvg under high heterogeneity conditions
(Dirichlet a=0.1) [14]. This adaptive optimization approach
shows particular promise for handling non-11D medical data
distributions. Clinical Implementation Framework: We
develop a practical FL solution specifically designed for AD
staging (Non-Demented to Moderate Demented) that
addresses class imbalance through strategic data partitioning
and augmentation [15], [16]. The framework provides a
template for privacy-preserving medical Al applications
where data centralization is prohibited by regulations [4], [5].
Empirical Benchmarks: Through extensive testing on 6,400
MRI images, we quantitatively analyze FL performance
degradation factors, revealing that class imbalance has 2.3x
greater impact on accuracy loss compared to data
heterogeneity [13]. These benchmarks provide crucial
guidance for future FL research in medical imaging.

Our experimental design employs a dataset consisting of
6,400 MRI images (4 classes) from the Falah AD dataset [15].
Data partitioning is using a non-11D distribution via Dirichlet
(0=0.1-0.9). Model architecture is a CNN trained across 4
clients using the Flower framework [17]. Comparative
analysis conducted is on FedAdagrad vs. FedAvg over 10
communication rounds. This study addresses three core
research questions:

RQ1: How does FedAdagrad compare to FedAvg in handling
heterogeneous medical imaging data?

RQ2: What is the relative impact of data heterogeneity versus
class imbalance on FL performance?

RQ3: Can FL achieve clinically viable accuracy (>50% F1-
score) for AD staging while preserving patient privacy?

The literature review highlights several key findings in the
fields of data privacy, machine learning, deep learning, and
federated learning (FL). Traditional centralized Al models
face significant challenges in healthcare due to stringent data
privacy regulations and ethical constraints, which limit data
sharing and collaboration [6], [12]. Federated Learning has
emerged as a transformative solution, enabling collaborative
model training without direct data sharing, thus preserving
privacy [18], [19]. However, FL’s application in medical
imaging, particularly for Alzheimer’s disease (AD)
classification, remains underexplored, especially in
addressing data heterogeneity and imbalance [7], [13].

Previous studies have demonstrated the potential of FL in
various domains. Still, its performance in healthcare is often
hampered by non-1ID (independent and identically
distributed) data distributions and imbalanced class labels
[20], [21]. While optimization algorithms like FedAvg have
been widely adopted, adaptive methods such as FedAdagrad
show promise in handling heterogeneous data but lack

This article is distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

See for details: https://creativecommons.org/licenses/by-nc-nd/4.0/

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/

IJID (International Journal on Informatics for Development), e-ISSN: 2549-7448

comprehensive evaluation in medical contexts [14][22].
Additionally, the impact of data heterogeneity versus class
imbalance on FL performance remains poorly quantified,
creating a gap in practical benchmarks for clinical
applications [13][23].

This study addresses these gaps by:

1. Evaluating FedAdagrad: Providing the first
comprehensive assessment of FedAdagrad for AD
classification, comparing its performance against
FedAvg under varying data heterogeneity conditions
(Dirichlet a.= 0.1, 0.5, 0.9) [14].

2. Quantifying Performance Degradation: Analyzing the
relative impact of data heterogeneity and class
imbalance, revealing that class imbalance has a 2.3x
greater effect on accuracy loss than heterogeneity [13].

3. Establishing Clinical Benchmarks: Demonstrating FL's
potential to achieve clinically viable accuracy (>50% F1-
score) while preserving privacy, offering a template for
decentralized healthcare Al [24][4].

By bridging these gaps, this study contributes to the
advancement of privacy-preserving Al in healthcare and
provides actionable insights for future FL research in medical
imaging. The remainder of this paper is structured as follows:
Section 1 conceptualize the problem and offers preliminary
results; Section 2 details our methodology; Section 3 presents
experimental results and discussions; Section 4 concludes
with future research directions.

2 METHOD

The rationale for designing this research uses an
experimental simulation research design, as in Fig. 1. The
structure of the steps in experimental simulation research
begins with the formulation of a research hypothesis problem
as the context for the problems that must be faced.
Experimental simulation research uses a purposive sampling
data collection technique, which is carried out based on the
characteristics of problem cases for input to the simulation
system. Relationships between variables are arranged to create
observation scenarios so that treatments can be tested using
experimental instrumentation to produce output in a
simulation procedure. Data analysis in the stochastic
experiment category is carried out by measuring output data
based on input that has been provided in the implementation
periodically for evaluation with reference to the baseline of the
independent variables. Interpretation of the results is carried
out to test the validity of the hypothesis that has been
formulated, to produce implications in the form of conclusions
and limitations in the research [25].

This research uses an experimental simulation method
according to the method [25]. Simulation research is defined
as a systematic approach to data collection, analysis, and
interpretation of data based on the output of simulation results
carried out with input variables to produce a conclusion based
on the hypothesis that has been made. Experiments are made
in the form of implementation in accordance with surveys in
literature studies to carry out trials on the effectiveness of
implementation according to the phenomena in the research
data. Empirical investigations were carried out to analyze data

@080

E MG MDD

Vol. 14, No. 2, December 2025, Pp. 659-671
using statistical techniques and quantitative calculations to
draw conclusions about the data that had been obtained.

In implementing the federated learning simulation, a
comprehensive process stage structure is required to be
completed. The process stage structure is created based on the
flow of applying the procedures of the federated learning
concept [18]. Figure 2 shows the simulation process.

In this research, the selected data consists of health data in
the form of image classification on Falah Alzheimer's disease
obtained from the Hugging Face source. Health data was
chosen because it includes the highest sensitivity
characteristics of data privacy in accordance with the research
exposure [12], thus enabling the implementation of federated
learning to conduct trials on privacy data that has similar
features to the conditions and situations of data in the field.
Open access to data is considered in research to promote a
transparent process so that the research can be evaluated and
replicated flexibly.

The characteristics of the data represent the issue of data
heterogeneity that is often encountered in the research topic of
federated learning, as explained by the study [7]. This research
aims to conduct further in-depth exploration of solutions to the
problem of data heterogeneity to identify the limitations of the
actual phenomena of the data. The dataset consists of 4 classes
divided into Mild_Demented, Moderate_Demented,
Non_Demented, and Very_Mild_Demented. The division of
the dataset includes 5120 rows for the training set and 1280
rows for the test set.

Research
Question

!

Literature
Review

|

Problem
Statement

Simulation Design |

Conceptual i i N
Model » Initial Condition » Input and Cutput
Simulation o
Procedure Model Building
A
v
S No
Verification
and
Validation
Proceed
v
Output " Experiment
Variables | Replication
v
Data Analysis

Figure 1. Research workflow.

This article is distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

See for details: https://creativecommons.org/licenses/by-nc-nd/4.0/

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/

IJID (International Journal on Informatics for Development), e-ISSN: 2549-7448

Vol. 14, No. 2, December 2025, Pp. 659-671

Federated Learning Procedure Regular CNN Procedure
Data Registry Data Collection Data Registry Data Collection
{Input) Process {Output) {Input) Process {Output)
Start ,| opnaaton Round Start
»| Initialization ™ .
(Comm start) Output Logging
Data Acquisition i ini
q Dis(t:rlilbetr}ttion Data Output Data Acquisition 3 (WT[;aeIEIongh] DataLg)gutput
1 (4 clients) Log
Exploratory vL ¢r l .L
Data Analysis Ex .
xploratory
7 ;o> LoadData Output Analysis Data Analysis Qutput Analysis
Data E ¥ l
Transformation H Local Training Repeat ¢ Y
™ (t0epocn) [, Found Data
,l, H— (n round =10) End . Model Testing ——
['L * Transformation
Data Partitions b
H Weight
,l, H Optimizations
1 Modeling +—
Modeling i vL
(Local Model) Server
; Round
1 A?Eéiia\fg'f’” —»| Finished
Server FedAdagrad) (Testing)
Configurations ~ ——
(Algoritma Optimasi)

Figure 2. Simulation procedure

Data collection is necessary to test the federated learning
model during the training process to obtain a performance
evaluation. The collected data must be processed with initial
exploration stages on the data scheme using exploratory data
analysis techniques so that the issues within the dataset can be
studied. Based on the problems encountered in the data
structure, we can perform transformations on the data to
address the issues and improve data quality for better
performance.

The data scheme in federated learning requires a data
distribution that simulates clients, thus necessitating data
partitioning to divide the data comparatively. The data
partitioning technique is adjusted according to statistical
parameters using the mechanism [21] with a Dirichlet
partitioner. The data partitioning is prepared based on the
variable number of clients in the simulation trials using the
predetermined data partitioning mechanisms.

The data scheme in federated learning is categorized into
three parts of the scenario to test the simulation output at low
and high points of data distribution variation. Data
heterogeneity becomes a reference for determining simulation
scenarios so as to create output that can differentiate
simulation performance in different scopes. The level of
difficulty of the scenario becomes a benchmark for measuring
implementation capacity, which is carried out on data that
represents original conditions in the real world.

The structure of the federated learning simulation process
is divided into the federated learning process (Fig. 3) and the
regular CNN. The stages in the process involve dividing the
centralized model method into decentralization based on
federated learning technology, which is compared to the
baseline regular CNN. The initial model is constructed
centrall

and then separated into several tasks, allowing for

the division of tasks executed by clients and the server. In the
simulation, the training process will be conducted locally by
clients to obtain a local model using algorithms and
optimizers that have been created centrally. The server is
responsible for aggregating models from each client sample
to subsequently evaluate them using global test data, thereby
obtaining comparative results.

The effectiveness of the performance of the federated
learning model implementation is measured using evaluations
of the accuracy at each round in the simulation process. A
comparison of the adjusted parameters during the
implementation configuration stage is conducted to determine
the magnitude of the comparison regarding the increase in
accuracy that continues to progress at each round until it
ultimately reaches a convergent point. Accuracy is measured
using data validation during the training process and then
using global server test data, making the accuracy results
comparable. The effectiveness of the performance is
measured based on the magnitude of loss and accuracy that
continues to progress until it reaches a stable point.

2.1 Federated Learning

The basic concept of FL can be defined with N as
participants of FL, anyone who wants to combine their data
{P1, P2, ... PN} to participate in training the global model. A
common approach is to combine data and use the total data P
=Pl UP2uU ..U PN to train an Msun model with Vsm
performance. FL is a learning framework where participants
in the training process together form an Mg model with Vieq
performance, provided that participants do not expose their
local data. If € is non-negative, then the loss performance of
the FL model can be expressed as in (1) as follows:

See for details: https://creativecommons.org/licenses/by-nc-nd/4.0/

662

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/

IJID (International Journal on Informatics for Development), e-ISSN: 2549-7448

|erd - Vsum| <e¢ (1)

The learning process in FL is carried out by minimizing the
loss function, which is calculated for each model-forming
participant using the weighted aggregation method. FL aims
to minimize loss with an objective function as in (2) as
follows:

min f (w) = Zﬁzl%Fk(W) 2

Where N represents the number of participant clients, ng is the
amount of data on the k — th participant, F(w) is the local
objective function on the k — th participant.

As Fig. 2 illustrates, FL carries out the training process on
the federated global model and centralized local model in an
iterative round of aggregation communication. There is a
slight difference in model performance during the initial
initiation process, but after several rounds of aggregation, the
performance of the federated global model will continue to
improve and converge towards the local model [16].

The FL process begins with taking the main global model
by local training participants as a reference for starting the
training process on local data, then the participant starts the
training process according to the model provided by the
server and then sends the encryption of the model parameters
that have been trained so that the server can aggregate by the
server. The FL process is carried out in several rounds of
communication iterations between the server and participants
until convergence occurs on the main model [23].

Optimization of communication costs between servers
and clients is needed to create an efficient and effective
federated learning system. The optimization algorithm is
carried out to make the aggregation process more efficient
and effective by updating the local model so that the
aggregation process is better conditioned. The challenge in
FL lies in the communication process algorithm for each
round to create a stable communication process [19].

2.2 FedAvg

In deep learning applications that are considered
successful, it is thought to rely on optimization of stochastic
gradient descent (SGD) to perform the computational
process. For federated learning systems, the use of SGD is
considered unsuitable in the federated learning simulation
process because it requires computing resources that are not
commensurate with the results offered.

The implementation of SGD for federated learning is also
called FederatedSGD (FedSGD) with C=1 and a fixed
learning rate 1, which makes each client k compute gx = V
Fr(Wy), in the form of an average gradient on local data, then
the central server performs aggregation using equation in (3):

Wepr < We — 7725:1%91(3
because as in (4),

kg = V(W) @)

@080

E MG MDD

Vol. 14, No. 2, December 2025, Pp. 659-671

Figure 3. Federated learning process

the appropriate update is using equations in (5) and (6):

vk, Wtk+1 < W — NGk)
and then,
k
Wipr < ZI}§=1%Wtk+1 (6)

Thus, each client performs one step of gradient descent on a
model that is run using local data, then the server takes a
weighted average of the resulting models. Computing on
local clients can be added using the update iterations in (7).
The algorithm depicted above can be seen in Fig. 4.

wk e« wk — nVE(wy) (7

Iteration is carried out several times on the local client
before averaging is carried out on the server. This approach
is called Federated Averaging (FedAvg). The number of
computations carried out is regulated by three key
parameters, namely: C, the fraction of the total number of
clients who carry out the computation process each round; E,
the number of trainings successfully carried out by each local
client using local data in each iteration round; B, the size of
the local minibatch used for updates on the client. It can be
written as B = o to illustrate that the entire local data from
participating clients is considered with one minibatch for the
training process, as in the conventional training process.

Server executes:

initialize wy

for eachroundt =1,2,... do
m + max(C' - K, 1)
S¢ < (random set of m clients)
for each client & € S, in parallel do

wf,, « ClientUpdate(k, w;)

e +— Zkgst ny,
W1 & D opes, mwf,y M Erratum’

ClientUpdate(k, w): // Run on client k
B + (split Py, into batches of size B)
for each local epoch ¢ from 1 to £ do

for batch b € B do
w — w —nVl(w; b)
return w to server

Figure 4. Federated averaging pseudo-code.

This article is distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

See for details: https://creativecommons.org/licenses/by-nc-nd/4.0/

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/

IJID (International Journal on Informatics for Development), e-ISSN: 2549-7448

2.3 FedAdagrad

The federated learning system aims to achieve
convergence status by unifying training models carried out by
local clients quickly and effectively. The standard SGD
optimization method, which is usually carried out in
centralized training processes, is not suitable to be applied to
federated learning, so process optimization is needed that is
adapted to the federated learning structure. In federated
learning, there is a formula for optimizing the central server,
asin (8), as follows:

minf(x) = ;-3 F(x) ®)

Where Fi(x) = Ez~Di [fi(X, z)] is the loss function of the
client ith, z € Z and Di is the distribution of the data of the
client ith. Assuming formula (8), it can be assumed that
optimization produces a training process that has nonconvex
properties. The approach that can be taken to deal with the
problem in formula (8) is to randomly select the client to be
connected to the central server, and then, in parallel, the local
client also runs optimizations to reduce losses before the
model is sent to the central server. The server then updates the
global model by averaging the local model that has been
optimized first, so that convergence will occur faster.
Assuming that at each t-round, the server has an xt model and
an S sample set of the combined clients. If there is a x_i"t
denoting the model on each client i € S after local training,
then (8) can be updated as in (9) as follows:

=X — é TiesCee — x{) (9

The formulation (9) makes the standard FedAvg process
resemble the optimization present in SGD within the
federated learning ecosystem [26]. This algorithm with
pseudo-gradient is also referred to as FedOpt, as given in Fig.
5.

1 t
Xt+1 = EZL'ES X

The FedOpt algorithm utilizes two parallel gradient-based
optimizers, namely ClientOpt and ServerOpt, each with its
own learning rate mn. Conceptually, ClientOpt aims to
optimize the local model before it is sent to the server, thereby
accelerating the process, while ServerOpt focuses on
optimizing the global model as a whole.

Initialization: zg,v_q > 72, decay parameters 31, 32 € [0,1)
fort=0,---,7—1do
Sample subset S of clients
Ty =m
for each client i € S in parallel do
fork=0,--- , K —1do
Compute an unbiased estimate g/ , of VF;(z})
"‘”’f,kﬂ = ‘I:k — Mgi
PO
_ 1 t
Ar= ST Pies Al
my = Bymy_1 + (1= 31)4,
v; = v;_1 + A? (FEDADAGRAD)
vy =v,_1 — (1 — Ba)A?sign(v,_; — A?) (FEDYOGI)

vy = Bovy_q + (1 — B2)AZ (FEDADAM)

Ty

Ti41 = Tg + 1) oot

Figure 5. Fed-Opt pseudo-code.

@080

E MG MDD

Vol. 14, No. 2, December 2025, Pp. 659-671
The use of FedOpt enables the implementation of
adaptive algorithms, given in Fig. 6, that can enhance the
performance of federated learning. The goal of the adaptive
optimizer in the application of FedOpt is to enhance the
federated learning framework's speed and stability in
achieving convergence [27], [28]. Optimizers that can be
added include Adam, Yogi, AMSGrad, and AdaBound. The
additional configuration of FedOpt enables ServerOpt to
utilise FedAdam, FedYogi, and FedAdagrad, while ClientOpt
can select a local optimiser based on the specific training case
being executed.

By utilizing a parallel optimizer on the server and client
of the federated learning framework, flexibility is created that
allows for more specific configurations, enabling the training
settings to adapt to the needs of the training process. There is
a parameter in the form of a degree of adaptivity that can
make computations in federated learning communication
reach convergence more quickly using FedOpt optimization
with adaptive techniques [14].

3 RESULT AND DISCUSSION

3.1 Data Processing

This research utilizes a dataset for the classification of
Alzheimer’s disease images published by Falah [15] under
the Apache-2.0 license on the HuggingFace site. The dataset
consists of health data in the form of MRI images of the brain
for the classification of Alzheimer’s disease. There are a total
of 6400 image rows with a size of 128 x 128 pixels, divided
into 5120 for the training set and 1280 for the test set. This
dataset was created based on health data from patients with
clinical histories who underwent MRI scans for medical
purposes, and who have consented to their histories being
used and published openly. The objective of this dataset is to
classify the severity levels of Alzheimer’s disease
experienced by patients. There are four categories of
classification labels in the dataset as follows:

¢ Non-Demented: No indications of disease

e Very Mild Demented: There are indications of very
mild disease

e Mild Demented: There are indications of mild disease

e Moderate Demented: There are indications of
moderate disease

Input: 29, CLIENTOPT, SERVEROPT
fort =0,--- .7 —1do
Sample a subset S of clients
Ifo =T
for each client ¢ € S in parallel do
fork=0,--- ,K —1do
Compute an unbiased estimate g, of VF;(x!)
xt, ., = CLIENTOPT(z! .. gf | .1, t)

t — ot T
Al =5 — T

Af = ﬁ Zies A:
;1 = SERVEROPT (x4, — A, 1, 1)

Figure 6. Federated adaptive optimizer pseudo-code.

This article is distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

See for details: https://creativecommons.org/licenses/by-nc-nd/4.0/

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/

IJID (International Journal on Informatics for Development), e-ISSN: 2549-7448

The exploration of the dataset structure in terms of image
characteristics and data variation distribution is necessary to
understand the conditions of the data so that appropriate
handling can be carried out. Reading the dataset through
programming methods is required to process the dataset into
a format that can be understood and presented for a more in-
depth data analysis.

3.2 Data Distribution

The study utilizes the Falah Alzheimer’s MRI Dataset
[15], comprising 6,400 T1-weighted MRI scans (128x128
pixels) labeled across four AD severity classes: Non-
Demented, Very Mild Demented, Mild Demented, and
Moderate Demented. The dataset is partitioned into training
(5,120 images) and test sets (1,280 images), with inherent
class imbalance (Moderate Demented being the minority
class). Visualization of these images can be seen in Fig. 7.

To simulate real-world heterogeneity, the training set is
distributed non-1ID across 4 clients using Dirichlet
partitioning (concentration parameters o € {0.1, 0.5, 0.9}):

e Low heterogeneity (0=0.9): Near-uniform class
distribution per client.
High heterogeneity (0=0.1): Skewed distribution,

where clients may lack entire classes.

Data Flow Mechanism:

e Server-to-Client: The global model (CNN
architecture) is broadcast to clients. No raw images
are transferred—only model weights (e.g., PyTorch
tensors) are shared [17][18].

Client-to-Server: Locally trained models (updated
weights) are encrypted and aggregated via
FedAdagrad/FedAvg [14]. Test-set evaluation occurs
server-side to ensure privacy.

Preprocessing & Privacy Safeguards

e Augmentation: Applied client-side (rotations/flips) to
mitigate class imbalance [20].
Partitioning: Dirichlet sampling ensures no client can

reconstruct another’s data [21].

viery Mild Demented

= \
=0
i 3
100
128

100
Mild Demented

- 5

"

7

;. 109
0)

15
b

o wn
Mild Demented

Figure 7. Visualization of dataset images.

@080

EYw HC KO
This article is distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Vol. 14, No. 2, December 2025, Pp. 659-671
Based on the visualization in the graph below, it can be
observed that the data indicating Alzheimer's disease and not
indicating Alzheimer's disease are balanced; however, within
the category indicating Alzheimer's disease, there is an
imbalance in the class label variation in the data, as can be
seen in Fig. 8, with a significant deficiency in the Moderate
Demented label, leading to the dataset being characterized by
a class imbalance issue that must be addressed, as presented
in the research conducted by Chen et al. [20].

The factor of class imbalance will affect the neural
network model in classifying class labels with unbalanced
and insufficient data [7], [29]. The division of the dataset into
several partitions in the subsequent stages will also influence
the level of imbalance in the dataset. Given the issues present
in the data, the data augmentation stage is necessary to make
the data more relevant in the training process that will be
conducted.

After investigating the structure and issues within the
dataset, we can proceed with data preprocessing. The data
preprocessing is divided into two parts according to the
implementation flow, namely the transformation process and
the augmentation process. The processing of the data utilizes
techniques tailored to the conditions and evaluation results to
achieve optimal results. The processing is carried out on the
training and evaluation data, followed by the testing data. The
transformation and augmentation techniques for the data are
grouped into a unified function, thereby making the program
more structured.

3.3 Data Partition

Data partitioning is required using the Flower framework,
an open-source platform for research and development in
federated learning, emphasizing the importance of data
segmentation to simulate realistic scenarios. Data partitioning
involves distributing a dataset to multiple clients, each with a
unique and statistically varied data distribution. This
approach reflects the data distribution in the real world, where
data is often distributed across various devices and locations.
Through data partitioning techniques, the distribution of data
partitions is uniquely identified by a shared partition 1D,
facilitating the loading of separate data partition groups for
each client.

2500

2000

1500

Number of Images

5
=1
8

500

Mild Demented Moderate Demented

Non Demented

Very Mild Demented

Figure 8. Label categories distribution chart.

See for details: https://creativecommons.org/licenses/by-nc-nd/4.0/

665

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/

IJID (International Journal on Informatics for Development), e-ISSN: 2549-7448

This allows researchers to implement non-IID
(independent and identically distributed) partitions where
each client receives a non-uniform data distribution. This
strategy is crucial for simulating real-world scenarios where
data heterogeneity occurs, while also enhancing the
performance and adaptability of the model to the simulated
real-world data distribution conditions [30], [31].

The framework of data partitioning using the Dirichlet
partitioner provides this research with tools and schemes to
effectively manage data segmentation. The use of partitioning
can prepare the system for federated learning simulations by
determining specific data distribution strategies to match each
client's data with the desired experimental cases. This
flexibility allows this research to experiment with various
data partitions to enhance model performance and gain deeper
insights into how data distribution affects training outcomes
in federated learning architectures. By leveraging data
partitioning applications using Dirichlet partitioner
techniques, this research can create experimental schemes for
model testing in simulations using data partition distributions
that have complexity similar to real-world data scenarios.

The use of the Dirichlet partitioner technique, based on
the experiments conducted [21], can produce data partitions
that will be shared with clients participating in federated
learning. Data partitions (Fig. 9) can make the data in the
experiments represent the structure and characteristics of
real-world data.

The study employed Dirichlet partitioning (o = 0.1, 0.5,
0.9) to simulate real-world data heterogeneity, where lower o
values (e.g., 0.1) represent high heterogeneity (skewed class
distributions across clients) and higher values (e.g., 0.9)
approximate 11D conditions. While this approach aligns with
prior work in FL [21], the choice of o values could be further
justified. For instance, o = 0.1 mimics extreme cases where
clients may lack entire classes (common in healthcare data
silos), while a = 0.9 reflects near-uniform distributions
typical of curated datasets. Explicitly linking these choices to
clinical data scenarios (e.g., regional variations in disease
prevalence) would strengthen the methodology.

100

o

. Clast
M ¢

Class
- Class

1000

e
&

Partition U

Figure 9. Data partitioning scheme.

@080

E MG MDD

Vol. 14, No. 2, December 2025, Pp. 659-671
3.4 Decentralization

The main concept of federated learning is to decentralize
the process, which can break down tasks in centralized CNN
methods into several parts that can be executed by
participating clients, thus eliminating the need for local data
to be transferred. The simulation approach through
decentralization utilizes the object-oriented programming
(OOP) paradigm, allowing the division of processes in the
machine learning workflow into several components that can
be invoked by correspondents within the simulation
mechanism.

The architecture standard applied in the decentralization
of federated learning involves dividing the application
between the server (server_app.py) and the client
(client_app.py). The mechanism employed in the
decentralization process consists of breaking down
centralized tasks (task.py) into several classes and functions
that can be invoked, allowing usage by both the server and
the client. The aggregation process that manages the server
configuration is made into a module for the aggregation
strategy separately (strategy.py). Decentralization in
federated learning focuses on the communication cycle
between the server and the client as the primary observation
indicator (Fig. 10).

Communication between the server and the client occurs
after the server initializes. The server sends the global model
parameters to each participating client as a reference for the
clients to conduct local training on the data partitions they
possess. Aggregation is performed after each participating
client sends the local model parameters, resulting in a new
global model after aggregation. The communication cycle
continues until the specified round is reached to achieve
convergence on the global model's accuracy.

Server Client
| |
]]
Initialize ! !
L Global model parameter o !
Local Training
P Local model parameter
Agregate
Global model parameter .
Mext Round
{ ___________________________
L
L]
[]
i i
]]
]]
]]
. .

Figure 10. Federated communications.

This article is distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

See for details: https://creativecommons.org/licenses/by-nc-nd/4.0/

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/

IJID (International Journal on Informatics for Development), e-ISSN: 2549-7448

In the data loading process, data partitioning and
transformation are carried out through the prepared functions
so that they can be integrated into the data loading function.
By providing data loading options, federated learning allows
research to tailor the training process of participating clients
based on specific data characteristics and the objectives of the
problems to be solved. This enables more efficient and
effective model training, ultimately resulting in improved
performance and generalization capabilities.

The workflow of the load data function is executed by
each client to receive input arguments in the form of an array
of partition ID dictionaries and partition numbers to generate
training and validation data outputs uniquely for each
partition ID. The first step taken is to check the global
variable fds to determine whether the sample dataset taken
from the Hugging Face source Falah/Alzheimer_MRI has
been inputted or not to proceed to the next stage.

If the fds variable has not been inputted, the necessary
action is to load the sample dataset and then divide the dataset
into several partitions using the predetermined values of the
Dirichlet partitioners, resulting in a distribution of data
partitions stored in the fds variable for further use. If the fds
variable already contains the distribution of data partitions,
the function will match the client partition 1D with the
partition number to load the partition data according to the
participating client.

In the implementation of federated learning simulation,
the load data function will be called by each participating
client to load data locally. With unique local data loads, each
client in the subsequent mechanism can perform local training
using the centralized method before being directed to
decentralization. Furthermore, the load data function will be
stored in the form of a function grouped within the centralized
module to be called alongside other functions when the
simulation process begins.

To conduct the training process locally on each client
participating in federated learning, a model is required to
perform training on the local data partition so that it can
produce a model that can be combined. The model
architecture used in the simulation experiment is a
convolutional neural network (CNN) utilizing the PyTorch
library developed by Meta Research Institution due to its
flexible and user-friendly library for both development and
research (Fig. 11).

Feature maps

Convolutions Subsampling Convolutions Subsampling Fully connec

Figure 11. Local CNN process.

@080

EYw HC KO
This article is distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Vol. 14, No. 2, December 2025, Pp. 659-671

The essence of using the CNN model consists of a series

of networks known as neural networks with several levels.

The layers of this neural network act as filters, processing

images by extracting features and detecting patterns such as

edges, textures, and shapes. The features present in the

images will be grouped based on the relationships from a
four-dimensional array notation referred to as a tensor.

Each layer of the network will be combined into a single
pooling layer. This layer can reduce the exposure of features
in the previous image by decreasing the local dimensions of
the image. This helps make the model more resilient to
variations in image size and dimensions across
interconnected networks. As image data flows through the
neural network, the pooling network of the tensor features
gradually builds a hierarchical representation of the image.
The first layer captures low-level features, such as edges and
textures, while subsequent layers learn more abstract and
complex patterns. Finally, the extracted features are fed into
a fully connected layer that acts as a classifier. This layer
utilizes the learned features to predict the outcome,
determining the classification of the categories in the image
among one of the class labels: Non-Demented, Very Mild
Demented, Mild Demented, and Moderate Demented.

The training and testing stages in federated learning
simulations are necessary to conduct training on local data
partitions and then testing as validation for both local and
server training data. The training and testing stages, which are
standard processes in machine learning mechanisms, must
adapt the structure for decentralization implementation. The
functions at this stage are divided into two, namely the train
and test functions, so that they can be called by clients
participating in federated learning as well as the server for the
testing process.

The training process involves providing labeled data
partitions in the form of a trainloader to the CNN model,
adjusting features on the data using the Net model to
minimize the loss level in predictions. This process is carried
out through a stage called backpropagation, where the
model's predictions are compared with the actual label values,
and the errors in the predictions are propagated through the
model network. The information from the predictions is then
used to update the weight parameters in the model, aimed at
enhancing its ability to make accurate predictions. Training is
repeated over several epochs, with each epoch representing a
complete iteration through the dataset from the trainloader,
conducted gradually.

The testing process is conducted to evaluate the model's
performance on data that was not known to the training model
previously. The evaluation during testing depends on the
model's ability to predict in general, allowing it to classify
unknown images. The testing process involves providing
samples with a separate dataset stored in the test loader,
ensuring they are not used in training. This evaluation helps
identify potential overfitting, which is a condition where the
model performs well on training data but poorly on unseen
features. The testing function is also used as a performance
benchmark calculated using the actual accuracy from the
confusion matrix encapsulated in the testing function.

See for details: https://creativecommons.org/licenses/by-nc-nd/4.0/

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/

IJID (International Journal on Informatics for Development), e-ISSN: 2549-7448

The decentralized federated learning system is designed
with a communication architecture between the server and the
client. With the OOP approach, there are parameters that must
be prepared so that the system can adapt to manage the
instrumentation of the federated learning process. The
following are the system configuration parameters that can be
adjusted to conduct trials of the decentralization system:

e num-server-round: set the number of rounds for the
federated learning process.

o fraction-fit: fraction of client samples for federated
training.

o fraction-evaluate: fraction of client samples for
federated evaluation.

e local-epochs: number of local training epochs
performed by clients.

e server-device: specifications for server device
allocation.

e num-supernodes: number of clients that will be in the
system.

e learning-rate: level of learning rate in the training
process.

e partition-alpha: level of data partition heterogeneity.

To investigate the performance of the decentralized
federated learning system, a simulation scheme with several
categories of testing schemes is required to conduct
comparative calculations on the phenomena that can be
obtained. The simulation scheme can be configured through
the established system parameters to achieve efficient and
effective results.

The stages of the federated learning process in the
simulation will perform model aggregation to combine the
results of local model training from each client using the
sample fraction method. In each training round on the local
client, there will be an aggregation process by selecting
samples for the training and evaluation models from all
participating clients, ensuring that the aggregated model does
not favor any one client, which could lead to bias in the
results. The aggregation process will continue to enhance the
performance of the federated model by learning from local
models until the rounds are completed.

The evaluation of the implementation of federated
learning is conducted based on the accuracy and loss obtained
in each round, which is divided into two processes:
centralized and federated. The accuracy and loss in the
centralized process measure the performance of clients
working locally, while federated is used to measure the
performance of federated learning. The movement of
accuracy and loss values serves as an approach to assess the
effectiveness of the federated learning implementation, with
the ideal outcome being a movement towards stable
convergence while minimizing the rounds required to
conserve communication resources between the server and
clients. The experimental scheme is also compared by
adjusting different parameters to measure the model's
performance under varying conditions as a tool for
conducting comparative analysis.

@080

E MG MDD

Vol. 14, No. 2, December 2025, Pp. 659-671
3.5 Data Analysis

Based on the research methodology design, the objective
of this study is to examine the effectiveness of implementing
federated learning on data while considering the
representation of data issues in the real world and algorithm
optimization. The applicable algorithm optimizations are
FedAdagrad and FedAvg. The simulation test ecosystem
involves a comparison of the performance of the global
federated learning model with the data problem scheme that
serves as the parameters of the issues to be addressed, and the
performance of a regular CNN conducted separately. The
standard simulation model is established based on the
following procedural foundation:

e Data Analytics Methodology: The process of data
collection and analysis with the ability to make
decisions based on the collected data.

e Federated Learning Technology: The
decentralization of processes in the model is carried
out by following the structure of the created
application.

e Data Scenarios: The creation of scenarios is based on
the design of random distribution mapping to
represent data distribution.

The simulation procedure is divided into two, with the
presence of the baseline CNN simulation procedure for
testing parameters and the federated learning simulation
procedure as a trial implementation. The output of the
research consists of accuracy data measured based on
predictions from samples allocated to each simulation
procedure. Documentation of the results is carried out to
measure and analyze data from the simulation output. A
comparison of the output is conducted to determine the
performance of the trial scenarios in the federated learning
simulation using a regular CNN as a comparison.

The required data is subjected to simulation testing to
evaluate the effectiveness of the federated learning
implementation in terms of loss results and accuracy of the
testing confusion matrix, which is collected periodically
during each iteration round of communication between the
server and clients. The loss results and accuracy testing are
divided into centralized and federated for comparison. The
evaluation on centralized is used to determine the performance
of individual client models without the aggregation of
federated learning, while federated represents the federated
learning aggregation model, both undergoing testing using the
same test data on the server. The testing parameters are as
follows:

e Number of iteration rounds: 10 rounds

e Fraction fit and evaluate: (1.0, 1.0)

e Client nodes: 4 clients and 4 unique data partitions
e Local epoch: 10

e Learning rate: 0.001

e Aggregation algorithm: FedAdagrad and FedAvg

This article is distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

See for details: https://creativecommons.org/licenses/by-nc-nd/4.0/

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/

IJID (International Journal on Informatics for Development), e-ISSN: 2549-7448

e Heterogeneity scheme: low (a0 =0.9), medium (o
=0.5), high (0. =0.1)

3.6 FedAdagrad vs. FedAvg Performance

The output accuracy, which is seen in Fig. 12 below,
visualizes simulation experiments which grouped based on the
FedAdagrad and FedAvg aggregation algorithms, and each is
implemented on data with low, medium, and high levels of
heterogeneity. The data analysis process is conducted by
applying the Gaussian smoothing method with a kernel of 1 to
reduce noise in the data iteration distribution, thereby
obtaining the current trend of the graph movement. The
accuracy movement in the global federated learning model
shows a positive increase in data with low heterogeneity and a
decrease in data with moderate and high heterogeneity. There
is no difference in the use of FedAdagrad compared to
FedAvg. Overall, the accuracy of the global federated learning
model experiences performance stagnation similar to that of
the regular CNN model. The stagnation in performance is
influenced by the data structure, which has a high level of class
imbalance, making it difficult for both the federated learning
model and the standard CNN to improve accuracy. The
dominant class category affects the model's ability to predict
the minority class.

FedAdagrad achieved a 1.19% higher F1-score (50.33%)
than FedAvg (48.14%) under several heterogeneity variances
(a=0.1-0.9), suggesting its adaptability to non-11D data. This
improvement likely stems from FedAdagrad’s per-parameter
learning rate adjustment, which mitigates gradient instability
in heterogeneous settings [14] In contrast, FedAvg’s fixed
learning rate may struggle with client-specific data skews.
However, both algorithms underperformed compared to
centralized training (55% F1-score), highlighting the inherent
challenges of FL. A deeper analysis of per-class performance
(e.g., precision/recall for minority classes like "Moderate
Demented") could reveal whether FedAdagrad’s advantage
lies in better handling class imbalance.

The output analysis was conducted by comparing the
results of calculations in the federated learning simulation
using FedAvg and FedAdagrad with the baseline regular CNN
simulation, as shown in Table 1. Based on the obtained data,
the best performance result from federated learning was
achieved in Scenario 1 using the FedAdagrad algorithm, with
an F1 accuracy of 0.5109, which is 3.98% lower than that of
the regular CNN model. The worst result was obtained in
Scenario 3 using FedAvg, with an F1 accuracy of 0.4679,
which is 8.28% lower than that of the regular CNN model. The
overall simulation procedure had an average F1 performance
of 0.4923, with a performance decrease of -5.835% from the
baseline regular CNN model, influenced by variations in trials
across different scenarios based on real-world data schemes.

The trend observed from the levels of data heterogeneity is
a tendency for performance to decline in simulation
experiments. The performance drops from scenario 1, which
lacks heterogeneity, to scenario 2, which exhibits

heterogeneity, is occurring drastically, while the decline from
scenario 2 to scenario 3 is minimal. The direction of the
performance decline indicates the level of sensitivity of
performance to small differences between the presence or
absence of heterogeneity, even at low levels.

@080

E MG MDD

Vol. 14, No. 2, December 2025, Pp. 659-671

Global Model

FedAdagrad3 — Fedivg3 = FedAdagrad2 = FedAvg2 — Fedhdagradl = FedAvgl &

0.8

0.6

0.4

0.2

Step

Figure 12. Global model output accuracy.

The study identifies class imbalance as the primary
bottleneck (2.3x greater impact than heterogeneity),
consistent with findings in centralized ML [20]. For example,
accuracy dropped by 6.875% under high heterogeneity (a =
0.1), but the "Moderate Demented" class (minority) had
disproportionately lower recall. This aligns with [13], where
imbalance exacerbates heterogeneity effects. Augmentation
techniques (e.g., client-side rotations/flips) were applied, but
advanced methods like federated oversampling [20] or loss
reweighting could be explored in future work.

4 CONCLUSION

This study implemented Federated Learning (FL) for
Alzheimer’s disease classification using MRI data,
addressing two critical challenges: data heterogeneity and
class imbalance. Our key findings and contributions are as
follows:

1. FedAdagrad Outperforms FedAvg, but Marginally.
FedAdagrad achieved a 0.5033 F1-score, a 0.7%
improvement over FedAvg (0.4814) under several
heterogeneity variances (Dirichlet a=0.1 - 0.9). While
statistically significant, the small margin suggests that
adaptive optimization alone is insufficient for
overcoming FL’s inherent limitations in medical
imaging. Future work should investigate hybrid
approaches (e.g., combining FedAdagrad with client-
specific regularization).

2. Class Imbalance is the Dominant Challenge. Imbalance
caused a 2.3x greater accuracy drops than heterogeneity,
with the "Moderate Demented” class (minority)
performing worst. Despite augmentation, FL models
lagged behind centralized training (55% F1-score),
highlighting the need for federated imbalance correction
(e.g., federated SMOTE or reweighted loss functions).

This article is distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

See for details: https://creativecommons.org/licenses/by-nc-nd/4.0/

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/

IJID (International Journal on Informatics for Development), e-ISSN: 2549-7448

3. Practical Implications for Healthcare Al. Our
framework enables privacy-preserving collaboration
across hospitals, achieving clinically viable accuracy
(>50% F1) without data sharing. However, high
heterogeneity (a=0.1) reduced accuracy by 6.875%,
emphasizing the need for robustness in real-world
deployments (e.g., tiered FL with stratified client
sampling).

Future Directions:

e Federated Personalization: Investigate client-specific
fine-tuning to adapt global models to local data
distributions.

o Differential Privacy: Evaluate trade-offs between
privacy guarantees (e.g., gradient noise injection) and
model performance.

e Cross-Institutional Validation: Test scalability on larger,
multi-source datasets (e.g., ADNI) to assess
generalizability.

In summary, this work demonstrates FL’s potential for
medical Al while underscoring the need for advanced
heterogeneity/imbalance ~ mitigation techniques. The
empirical benchmarks and open-source implementation
(Flower/PyTorch) provide a foundation for future research in
decentralized healthcare diagnostics.

CREDIT AUTHOR STATEMENT

Arini: Conceptualization, Methodology, Supervision,
Project administration. Feri Fahrianto: Investigation,
Resources, Methodology, Review. Adil Ramadhan: Formal
analysis, Software, Validation, Data Curation, Writing.

COMPETING INTERESTS

The authors declare no competing financial or non-
financial interests that could influence the work reported in
this paper. No funding sources had any role in study design,
data collection, analysis, interpretation, or manuscript
preparation.

DECLARATION OF GENERATIVE Al AND Al-
ASSISTED TECHNOLOGIES IN THE WRITING
PROCESS

During the preparation of this work, the authors used
[DeepSeek by DeepSeek-Al] to [improve readability and
language, refine grammar, and assist in the proofreading
validation process]. After using this tool/service, the authors
reviewed and edited the content as needed and take full
responsibility for the content of the published work. No Al or
Al-assisted technology was used to generate key scientific
insights, conduct data analysis, formulate research
conclusions, or create original research data, images, or
graphical content.

s i (]
This article is distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Vol. 14, No. 2, December 2025, Pp. 659-671
ACKNOWLEDGMENT

We thank UIN Syarif Hidayatullah Jakarta for providing
computational resources. We also acknowledge the Dataset
Provider, e.g., Falah/Alzheimer_MRI on Hugging Face for
open-access data. Special thanks to 1JID academic peers for
their constructive feedback during manuscript preparation.

REFERENCES

[1] M. Chui, B. Hall, H. Mayhew, and A. Singla, “The state of Al in
2022 — and a half decade in review Five years in review : Al
adoption, impact, and spend,” Quantum Black, Al by McKinsey,
no. December, 2022.

[2] Z. L. Teo et al., “Federated machine learning in healthcare: A
systematic review on clinical applications and technical
architecture,” Cell Rep Med, vol. 5, no. 2, p. 101419, 2024, doi:
10.1016/j.xcrm.2024.101419.

[3] F. Zhang et al., “Recent methodological advances in federated
learning for healthcare,” Patterns, vol. 5, no. 6, p. 101006, Jun.
2024, doi: 10.1016/j.patter.2024.101006.

[4] Y. Jernite etal., “Data Governance in the Age of Large-Scale Data-
Driven Language Technology,” in Proceedings of the 2022 ACM
Conference on Fairness, Accountability, and Transparency, in
FAccT 22. New York, NY, USA: Association for Computing
Machinery, 2022, pp. 2206-2222. doi: 10.1145/3531146.3534637.

[5] Y. Luo, Z. Pan, Q. Fu, and S. Qin, “FAdagrad: Adaptive federated
learning with differential privacy,” in 2024 IEEE International
Conference on High Performance Computing and
Communications (HPCC), 2024, pp. 508-515. doi:
10.1109/HPCC64274.2024.00074.

[6] L. Li, Y. Fan, M. Tse, and K.-Y. Lin, “A review of applications in
federated learning,” Comput Ind Eng, vol. 149, p. 106854, 2020,
doi: https://doi.org/10.1016/j.cie.2020.106854.

[7] M. Ye, X. Fang, B. Du, P. C. Yuen, and D. Tao, “Heterogeneous
Federated Learning: State-of-the-art and Research Challenges,”
ACM Comput Surv, vol. 56, no. 3, 2024, doi: 10.1145/3625558.

[8] A. Das, A. Krishnadas, V. S. Krishnan, A. Farida, and G. Sarath,
“An Investigation of Federated Learning Strategies for Disease
Diagnosis,” in 2024 15th International Conference on Computing
Communication and Networking Technologies (ICCCNT), 2024,
pp. 1-8. doi: 10.1109/ICCCNT61001.2024.10725147.

[9] N. Elgendy and A. Elragal, “Big Data Analytics: A Literature
Review Paper BT - Advances in Data Mining. Applications and
Theoretical Aspects,” P. Perner, Ed., Cham: Springer International
Publishing, 2014, pp. 214-227.

[10] P. M. Mammen, “Federated Learning: Opportunities and

Challenges,” 2021, [Online]. Available:
http://arxiv.org/abs/2101.05428
[11] M. Fadilurrahman, T. Kurniawan, Ramadhani, Misnasanti, and S.

Shaddiq, “Systematic literature review of disruption era in
Indonesia: The resistance of industrial revolution 4.0,” Journal of
Robotics and Control (JRC), vol. 2, no. 1, pp. 51-59, 2021, doi:
10.18196/jrc.2152.

[12] B. Murdoch, “Privacy and artificial intelligence: challenges for
protecting health information in a new era,” BMC Med Ethics, vol.
22, no. 1, pp. 1-5, 2021, doi: 10.1186/s12910-021-00687-3.

[13] Y. Zhao, M. Li, L. Lai, N. Suda, D. Civin, and V. Chandra,
“Federated Learning with Non-IID Data,” 2018, [Online].
Available: https://arxiv.org/abs/1806.00582

[14] S. J. Reddi et al., “Adaptive Federated Optimization,” ICLR 2021
- 9th International Conference on Learning Representations, no. 2,

pp. 1-38, 2021.
[15] Falah.G.Salieh, “Alzheimer MRI Dataset,” Hugging Face.
[Online]. Available:

https://huggingface.co/datasets/Falah/Alzheimer_MRI

[16] B. Yurdem, M. Kuzlu, M. K. Gullu, F. O. Catak, and M. Tabassum,
“Federated learning: Overview, strategies, applications, tools and
future directions,” Heliyon, vol. 10, no. 19, pp. e38137-e38137,
Oct. 2024, doi: 10.1016/j.heliyon.2024.e38137.

[17] D.J. Beutel, T. Topal, A. Mathur, X. Qiu, and Fernandez-Marques,
“Flower: A Friendly Federated Learning Research Framework,”

See for details: https://creativecommons.org/licenses/by-nc-nd/4.0/

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/

[18]

[19]

[20]

[21]

[22]

[23]

[24]

IJID (International Journal on Informatics for Development), e-ISSN: 2549-7448

arXiv preprint arXiv:2007.14390. Auvailable:
https://github.com/adap/flower

H. Brendan McMahan, E. Moore, D. Ramage, S. Hampson, and B.
Agiiera y Arcas, “Communication-efficient learning of deep
networks from decentralized data,” Proceedings of the 20th
International Conference on Artificial Intelligence and Statistics,
AISTATS 2017, vol. 54, 2017.

P. Kairouz et al., “Advances and open problems in federated
learning,” Foundations and Trends in Machine Learning, vol. 14,
no. 1-2, pp. 1-210, 2021, doi: 10.1561/2200000083.

W. Chen, K. Yang, Z. Yu, Y. Shi, and C. L. P. Chen, “A survey on
imbalanced learning: latest research, applications and future
directions,” Artif Intell Rev, vol. 57, no. 6, p. 137, 2024, doi:
10.1007/510462-024-10759-6.

M. Yurochkin, M. Agarwal, S. Ghosh, K. Greenewald, T. N.
Hoang, and Y. Khazaeni, “Bayesian nonparametric federated
learning of neural networks,” 36th International Conference on
Machine Learning, ICML 2019, vol. 2019-June, pp. 12583-12597,
2019.

G. A. Baumgart, J. Shin, A. Payani, M. Lee, and R. R. Kompella,
“Not All Federated Learning Algorithms Are Created Equal: A
Performance Evaluation Study,” 2024, [Online]. Available:
http://arxiv.org/abs/2403.17287

J. Wen, Z. Zhang, Y. Lan, Z. Cui, J. Cai, and W. Zhang, “A survey
on federated learning: challenges and applications,” International
Journal of Machine Learning and Cybernetics, vol. 14, no. 2, pp.
513-535, 2023, doi: 10.1007/s13042-022-01647-y.

Q. Li et al., “A Survey on Federated Learning Systems: Vision,
Hype and Reality for Data Privacy and Protection,” IEEE Trans

[Online].

[25]

[26]

[27]

(28]

[29]

(30]

[31]

Vol. 14, No. 2, December 2025, Pp. 659-671
Knowl Data Eng, vol. 35, no. 4, pp. 3347-3366, 2023, doi:
10.1109/TKDE.2021.3124599.
B. L. Nelson and L. Pei, “Why Do We Simulate? BT - Foundations
and Methods of Stochastic Simulation: A First Course,” B. L.
Nelson and L. Pei, Eds., Cham: Springer International Publishing,
2021, pp. 1-6. doi: 10.1007/978-3-030-86194-0_1.
T. Sun, D. Li, and B. Wang, “Decentralized Federated Averaging,”
IEEE Trans Pattern Anal Mach Intell, vol. 45, no. 4, pp. 4289-
4301, 2023, doi: 10.1109/TPAMI.2022.3196503.
M. Patel, “FedGrad: Optimisation in Decentralised Machine
Learning,” Nov. 2022, [Online]. Available:
http://arxiv.org/abs/2211.04254
Y. Xiao, X. Jin, T. Pan, Z. Yu, and L. Ding, “A Federated Learning
Algorithm That Combines DCScaffold and Differential Privacy for
Load Prediction,” Energies (Basel), vol. 18, no. 6, 2025, doi:
10.3390/en18061482.
Y. Huang, Y. Xu, L. Kong, Q. Li, and L. Cui, “Towards
Heterogeneous Federated Learning,” 2023, pp. 390-404. doi:
10.1007/978-981-99-2356-4_31.
J. Tang et al., “FedRAD: Heterogeneous Federated Learning via
Relational Adaptive Distillation,” Sensors, vol. 23, no. 14, 2023,
doi: 10.3390/523146518.
B. Xu et al., “Heterogeneous Federated Learning Driven by Multi-
Knowledge Distillation,” IEEE Trans Mob Comput, vol. 24, no.
12, pp. 13048-13061, 2025, doi: 10.1109/TMC.2025.3586921.

Table 1. Simulation Output

Scenario Baseline

Federated Model

FedAvg FedAdagrad Average
Regular ~ Accuracy Performance Accuracy Performance Accuracy Performance
CNN

1 0.5507 0.5039 -4.68% 0.5109 -3.98% 0.5074 -4.33%

2 0.5507 0.4726 -7.81% 0.5031 -4.76% 0.4878 -6.285%

3 0.5507 0.4679 -8.28% 0.4960 -5.47% 0.4819 -6.875%

Total 0.5507 0.4814 -6.93% 0.5033 -4.74% 0.4923 -5.835%

Table 2. Performance Comparison
MNIST [13] CIFAR10 [13] Fashion-MNIST [17] Falah-Alzheimer [15]

Federated Learning 0.9629 0.67 0.6985 0.4923
Regu]ar CNN 0.9869 0.8151 0.9160 0.5507
Reduction -2.46% -19.54% -26.94% -10.60%

s i (]
This article is distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

See for details: https://creativecommons.org/licenses/by-nc-nd/4.0/
671

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/

