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Abstract— Diabetes, if not detected early, can lead to serious complications such as vision loss, known as diabetic retinopathy.
Explainable Artificial Intelligence (XAl) can enhance traditional Machine Learning methods, which are not understandable and
transparent in diagnostic tasks. This Systematic Literature Review explores data inputs that influence the performance of XAl models
in detecting diabetic retinopathy, how XAl techniques can enhance early detection outcomes in diabetic retinopathy, the challenges
in implementing these techniques and the ethical implications of using these models in clinical practice. The Preferred Reporting
Items for Systematic Reviews and Meta-Analyses approach guided the search in 4 databases, Springer, Science Direct, PubMed and
IEEE Xplore. The findings reveal that XAl techniques like Local Interpretable Model-agnostic Explanations (LIME), SHapley
Additive exPlanations (SHAP) and Gradient-weighted Class Activation Mapping (GRAD-CAM) offer opportunities like early
detection outcomes, integration with existing clinical processes, enhancing trust in Al systems, improving accuracy and personalised
treatment. XAl can also facilitate collaboration among clinicians, maintaining fairness in Al systems and supporting adherence to
ethical standards. However, research on clinical validation of these models, as well as standardised performance evaluation metrics,
is lacking.
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1 INTRODUCTION

Diabetic retinopathy (DR) is one of the most common
complications of diabetes, which causes visual impairment
and blindness, especially in the working-age population [1].
It is estimated that once a patient is classified as having
diabetic retinopathy, it will progress to the vision-threatening
stage in approximately 11% of patients each year, which
makes diabetic retinopathy a public health concern [2].

Detecting diabetic retinopathy in its early stages is vital in
helping healthcare providers make informed decisions about
patient management and effective treatment strategies [3].
The current management of diabetic retinopathy is based on
recognising fundus images in earlier stages, using methods
like fundus photography [4]. In low-income countries where
there is a lack of healthcare resources [5] and a lack of trained
caregivers for retinopathy screening and early detection, there
is growing evidence to support the use of Artificial
Intelligence (Al) in screening the population at risk of sight
loss due to diabetic retinopathy complications [6].

Advances have been made in predicting and managing the
disease, but most of the ML algorithms fail to give insight
beyond the provided data, and they require extensive
debugging and deciphering to understand them [7]. There is
a substantial positive impact of promoting the reliance of
clinicians on Al-based models for early detection of diabetic
retinopathy, leading to innovative autonomous systems that
can reduce the costs of screening and address the shortage of
caregivers in that field [8]. ML is regarded as a concept with
great success in engineering and sciences, but data-driven
insights have their limits, especially when it comes to data
availability [9].

Explainable Artificial Intelligence (XAl) is a collection of
ML techniques that are designed to make Al-based systems
more interpretable and transparent, allowing the end-users to
understand and trust these systems [10]. XAl is capable of
boosting interactivity by facilitating  collaborative
explanations, allowing end-users to engage and manipulate
inputs to discover varying patterns [11]. XAl is also capable
of bringing about fairness in Al systems by analysing and
mitigating biases from training data, and also supports
adherence to ethical standards to ensure the responsible use
of Al systems [12].

Ref. [13] and [14] identified opportunities in XAl,
highlighting that it has the potential to utilise low
computational resources, meaning that XAl can be more
accessible even to smaller healthcare facilities with low
budgets. Ref. [15], [16], [17] highlight the opportunity that
XAl creates to make Al systems more understandable,
increasing trust and adoption by clinicians. Ref. [18], [19],
[20] all use fundus image datasets in their studies, showing
that the most commonly used type of data in the early
detection of diabetic retinopathy is retinal image data. Ref.
[21] identified the challenges of implementing XAl in clinical
settings, stating the scarcity of high-quality data needed for
training models as well as the difficulty in complying with
regulatory and ethical guidelines, which mostly complicate
the implementation of these Al-based systems.
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Despite all the research on XAl in predictive models,
existing studies tend to focus more on general ophthalmologic
applications. This manuscript provides a focused review of
how XAl has been applied in the early diagnosis of diabetic
retinopathy, adding novelty by including the types of data
inputs and analysing the ethical implications of XAl, to
highlight the effects of applying this technology, whether
positive or negative. Our research questions are:

1. What data inputs significantly influence the performance
of XAl models in detecting diabetic retinopathy?

2.  What innovative XAl techniques are emerging as pivotal
tools in the early diagnosis of diabetic retinopathy?

3. How might XAl techniques create new pathways for
improving early detection outcomes in diabetic
Retinopathy?

4. What challenges need to be addressed when incorporating
XA techniques into the early detection processes for
diabetic retinopathy?

5. What are the ethical implications of using XAl models for
detecting diabetic retinopathy in clinical practice?

2 METHOD

A Systematic Literature Review was used to answer the
posed questions, with the Preferred Reporting Items for
Systematic Reviews and Meta-Analyses (PRISMA) approach
applied in the identification, screening, and determining the
eligibility of studies. This review uses quantitative analysis to
understand the findings and collected data.

Science Direct, Springer, PubMed and IEEE Xplore were
used as databases for searching relevant literature. Various
specific keywords and synonyms were used to search the
databases. The search string used Boolean connectors, which
were layered as follows: (“early detection” OR "early
diagnosis") AND ("diabetes retinopathy” OR "diabetic
retinopathy™) AND ("explainable Al" OR "interpretable Al"
OR "explainable artificial intelligence” OR "“interpretable
machine learning". To enhance the reproducibility of our
search results, the number of results associated with key terms
in the search string was recorded as follows: (“early
detection” OR “early diagnosis") = 178, ("diabetes
retinopathy"” OR "diabetic retinopathy") = 202, ("explainable
Al" OR "interpretable AI" OR "explainable artificial
intelligence” OR “interpretable machine learning™) = 299.
Some of the combinations were overlapping, which means
individual block counts did not sum up to 202 studies. In this
case, the Boolean logic ensured that only the studies that
appeared in all three blocks were included in the final query.
The search was executed on 3 February 2025.

Due to the large number of articles found in online
databases, the search string returned thousands of papers, a
large number of which were irrelevant. In this case, the focus
was on studies directly related to the use of XAl in diabetic
retinopathy detection; studies strictly written in the English
language and published from 2020 to 2025. The choice to
focus on the studies in the specified period was based on the
notion that recent studies reflect current challenges and
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technologies and provide more context that may be useful for
future research. Studies were excluded if they were non-peer-
reviewed, non-original research, like commentaries and
reviews, less detailed (lack of description for the ML, Al tool
applied or performance metrics), and studies applying XAl
outside the context of diabetes retinopathy or early detection.
To assess the methodological quality and risk of bias of the
included studies, we applied the QUADAS-2 tool, which is a
validated instrument for evaluating diagnostic accuracy
studies. BN evaluated Patient Selection, focusing on whether
the studies used a representative sample of patients,
specifically, individuals whose retinal images were included
for diabetic retinopathy detection and whether any
inappropriate exclusions were made (e.g., excluding mild
cases or poor-quality images without justification). KM
assessed the Reference Standard, examining whether the
expert annotation of retinal images was valid and consistently
applied; studies involving multiple expert graders or
clinically verified labels were rated as low risk. TN reviewed
the index test and the flow and timing domains, determining
whether the ML/ALI technique was applied consistently across
all subjects. Studies that followed a consistent protocol scored
low bias risk. The limitations in using this method are that
extracting data from the selected studies can be prone to
human error, and also variations in the reporting style of the
papers may make it difficult to maintain consistency in
comparing results. To overcome these limitations, the authors
applied double data extraction, whereby two reviewers, TN
and BN, extracted data separately and resolved any
discrepancies through discussion with KM. All authors also
set clear inclusion and exclusion criteria to focus on studies
that meet a specific reporting standard (PRISMA in this case),
to address the issue of variations in reporting style.

A total of 202 were identified through four electronic
databases: Springer =146, IEEE Xplore = 8, PubMed =6 and
Science Direct = 42.

After removing 4 duplicate records, 198 records remained
for title and abstract screening. Of these, 125 records were
excluded because their titles did not specifically align with
the research topic (unrelated to diabetic retinopathy or
ML/XAL).

A total of 43 full-text articles were assessed, and 13
studies were excluded for lacking sufficient detail about the
machine learning techniques or XAl methods applied. A
further 13 studies were removed as they focused on treatment
strategies and general ophthalmology, with no application of
algorithms and XAl techniques. 3 Studies were excluded for
not providing algorithm accuracy. 1 study was not written in
the English language, leading to exclusion. Following the
overall eligibility assessment, 13 studies met all inclusion
criteria and were included in the final quantitative synthesis
and methodological quality assessment.

3 RESULT AND DISCUSSION

The following PRISMA diagram in Fig. 1 shows the
identification and screening of records from the searched
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databases. Figure 1 shows a Prisma flow diagram to illustrate
the process of identifying and screening records from the
selected databases. The process led to the selection of 13
studies that satisfied the inclusion criteria. These studies are
given in Table 1.

3.1  Number of Publications per Continent

Figure 2 shows a bar graph that represents the studies
published for each continent. From the bar chart in Fig. 2,
Asia (6 publications) has a high prevalence of studies and
research when it comes to diabetic retinopathy, which may be
attributed to the large population of people with diabetes
mellitus in India [22].
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Figure 2. Number of publications per continent
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Table 1. Papers that Met the Inclusion Criteria

Dataset ML and XAl Accura Data Ethical
Author Used Origin Research aim | Opportunities | Challenges Algorithms cy Inputs Implication
Used p S
[23] (Khan | Kaggle Pakistan Diabetic e Increased e Small e Visual e 85% e Labelling e Bias and
et al., | Diabetic Retinopathy trust dataset Geometry informati fairness
2021) Retinopathy Detection e Enhanced Group of the on e Transpare
Detection Using VGG- performance University e Colored ncy
NIN, a Deep o Low of  Oxford image
Learning computing (Vgg16) data
Architecture resources. VGG-NIN
model
[24] (Taifa | EyePACS Bangladesh A hybrid | e Personalised e Limited o Decision e 955 o Labelling o Clinical
et al., approach  for treatment dataset trees 0% informati responsibi
2024) enhancing o Improved size o Random on lity
diabetic accuracy o Difficult forests e Colored e Data
retinopathy to  Support image privacy
interpret Vector data e Biasand
e Image Machines Fairness
quality .
variations Transpare
ncy and
interpreta
bility
[25] Kaggle South Africa, | Developing a o Integration o Dataset e CNN e 95% o Retinal e Bias and
(Shahzad Diabetic Pakistan transparent with clinical limitation e LIME images fairness
et al., | Retinopathy diagnosis systems. e Requires (Local e Demogra e Transpare
2024) Detection model for | e Efficient powerful Interpretable phic data ncy
dataset Diabetic patient computati Model- (age,
Retinopathy management onal agnostic gender,
Using . resources Explanation BMI)
Explainable Al « Enhanced e Lack of s
accuracy. robust
o Interpretable preproces
systems sing
o Leverage layers
less e Limited
powerful use of
computation Explainab
al resources. le Al
[26] (Li et | Kaggle Malaysia The adoption of | e Integration e Need for | ¢ CAM (Class |  98.3 o Retinal o Clinical
al 2022) Diabetic deep learning with clinical validation Activation 4% images responsibi
Retinopathy interpretability practices. Mapping) lity
Detection techniques on e Increased e CNN
dataset diabetic trust
retinopathy  Enhanced
analysis accuracy
[19] (Ikran | Kaggle Pakistan ResViT o Integration o Interpreta e Grad-CAM e 93.0 o Retinal e Clinical
et al 2025) Diabetic FusionNet with clinical bility (Gradient- 1% images responsibi
Retinopathy Model: An processes limitation weighted lity and
Detection explainable Al- o Improved s Class patient
dataset driven approach accuracy o Complexi Activation safety
for automated e Enhanced ty Mapping) e Bias in
grading of trust o Validatio o LIME data
diabetic o Enhanced n of (Local training
retinopathy in interpretabili explanatio Interpretable e Transpare
retinal images ty. ns Model- ncy
o Variabilit agnostic
y in image Explanation
quality s)
) L]
e Imbalance
d datasets,
e Need for
interpreta
ble
models
L]
[21] Kaggle India Multimodal o Regulatory e Bias and | e Multimodal * 96.4 o Image e Clinical
Bidwai et | Diabetic image  fusion compliance fairness image fusion 7% data responsibi
al., 2021) Retinopathy for the detection e Enhanced o Computat o SHapley lity and
Detection of diabetic trust jonal Additive patient
retinopathy o Improved resource Explanation safety
using decision requireme s (SHAP)
making nts .

s i (]
This article is distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

See for details: https://creativecommons.org/licenses/by-nc-nd/4.0/
619



https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/

IJID (International Journal on Informatics for Development), e-ISSN: 2549-7448
Vol. 14, No. 2, December 2025, Pp. 616-628

optimised e Data e Bias in
explainable Al- quality data
based Light and training
GBM classifier availabilit e Transpare
y ncy Trust
o Complexi
ty
[27] Kaggle India, USA, | Artificial e Improved e Lack of e CNN e 993 e Clinical e Bias in
(Parmar et | Diabetic Italy, Intelligence accuracy interpreta % data data
al., 2024) Retinopathy Nigeria. (Al) for Early | e Personalised bility. (patient representa
Detection Diagnosis  of treatment demograp tion
Retinal o Integration hics) Clinical
Diseases into clinical e Retinal ¢ Responsib
practice images ility and
accountab
ility
[28] .| Kaggle Spain Attention-based e High o Dataset e CNN e 772 e Retinal e Transpare
(Romero- Diabetic deep learning accuracy limitation % images ncy
Oradetal., | Retinopathy framework for e High s e Data
2024) dataset automatic performance | o Lack of quality
fundus image transparen e Bias and
processing  to cy. fairness
aid in diabetic
retinopathy
grading
[29] Patient Norway Hybrid e Improved o Computat e SHapley e 895 e Clinical e Clinical
(Yagin et | Cohort Explainable decision ional Additive 8% parameter responsibi
al., 2024) Artificial making resource exPlanations s (glucose lity and
Intelligence o Integration requireme (SHAP) levels) patient
Models for into clinical nts * Metaholo safety
Targeted practice o Data mic data | e Bias in
Metabolomics  High availabilit (glucose, data
Analysis of accuracy y amino e Transpare
Diabetic o Personalised | o Complexi acids) ncy
Retinopathy treatment ty e Demogra
phic data
(age)
L]
[30] Open Access | Norway Explainable e Enhanced e Need for o Explainable e 89.3 e Metabolo e Clinical
(Yagin et | Data on T2D Artificial trust validation Boosting 3 mic data responsibi
al 2023) Patients Intelligence o Increased e Integratio Machine (metabolit lity
Paves the Way accuracy n  with (EBM) es e Bias in
in Precision clinical associated data
Diagnostics and processes with DR), interpreta
Biomarker o Complexi e Demogra bility
Discovery ty. phic data | e Transpare
(age, ncy
gender,
BMI)
[16] Aptos 2019 | Bangladesh Enhancing e Improved e Not e CNN e 952 e Retinal e Transpare
(Ahnaf et | Blindness Early Detection trust transparen . 7% images ncy
al., 2024) Detection of Diabetic e Enhanced t e Clinical
Dataset Retinopathy accuracy o Image accountab
Through  the | o |ntegration quality ility
Integration with clinical variation e Bias in
of Deep settings. data
Learning representa
Models and tion
Explainable Al.
[31] Diabetes China Prediction and o Basis for e Data e SHAP e 825 e Retinal e Clinical
(Wang et | Complicatio analysis of risk future availabilit Framework % images accountab
al., 2024) n Early factors for research y (SHapley ility
Warning diabetic e Integration Additive e Bias and
Dataset retinopathy with clinical exPlanations fairness
based on operations. )
machine « Enhanced
learning and trust
interpretable
models.
[32] OPHDIAT France Explanatory e Improved * Balancing e ExplAln, e 997 o Labelled e Bias
(Quellec et artificial decision explainabi e Generalised 8% data e Clinical
al., 2021) intelligence for making lity and Occlusion for e Image accountab
diabetic e Enhanced performan Method sever data ility
retinopathy trust ce . e DR
diagnosis o Complexi e 99.3
ty 9%
(mod
erate
DR)
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Europe has the second most publications (4 publications)
on diabetic retinopathy. Africa has 2 publications, followed
by 1 study from America. The least number of publications is
in Antarctica and Oceania, with both continents recording 0
publications related to diabetic retinopathy. Despite the
shortage of eye-care professionals and healthcare resources in
Africa, Africa has 2 publications, revealing a research gap in
the region. Region-specific research is required to ensure fair
representation across diverse populations and trigger
initiatives to support low-resource settings.

3.2  Algorithms Adopted

Figure 3 shows the count of algorithms that were
leveraged in each publication. Five (5) studies used CNN as
the traditional/baseline algorithm of choice for their study.
SHAP was leveraged by three (3) studies, Gradient-weighted
Class Activation Map (Grad-CAM) was utilised by 3 studies,
LIME (2 studies), ExplAlIn and EBM (1 study). Leveraging
these XAl methods with powerful algorithms like CNN could
boost the results even further and lead to effective hybrid
models. SHAP and Grad-CAM are the most utilised XAl
techniques to improve the explainability of the traditional
algorithms, with both of these techniques amounting to a total
of 6 studies out of the 13 studies. The consistent appearance
of CNN architectures enhanced with XAl across the high-
performing studies suggests that hybrid approaches are
becoming the new standard in clinical decision support
systems.

3.3  Data Inputs per Study

Table 2 shows the data inputs that were used to predict
diabetic retinopathy in each study. Retinal images (11
studies) are the most common data input in the diagnosis of
DR, showing their dominance in the early detection of
diabetic retinopathy. The wide use of retinal images as data
inputs is due to the visual nature of the condition and the
reliance on image-based deep learning techniques like CNN.
Clinical data is also useful, as it is utilised in 4 studies.
Labelled data (3 studies) is also important as it shows the
classes present in the datasets used for training. Metabolomic
data were leveraged in 2 of the reviewed studies. The
integration of metabolomic, clinical and labelled data with
retinal images indicates that multimodal fusion of data could
enhance diagnosis and uncover additional information that
images alone may otherwise miss.

3.4 Opportunities per Publication

Table 3 illustrates the number of opportunities that were
recorded as they appeared in each reviewed study. From the
table, integration into clinical practice is an opportunity that
was mentioned in 7 of the reviewed studies.
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Figure 3. Algorithms used per study

Table 2. Data Inputs per Study

Data input Occurrence/studies
Retinal images 11
Clinical data 4
Labeled data 3
Metabolomic data 2

One study mentioned the ability of XAl methods to
leverage low-resource computation tools as having good
potential to enhance diabetic retinopathy diagnosis. Eight of
the reviewed studies highlighted that XAl can enhance trust
in Al systems. Out of the reviewed papers, 3 studies agree that
XAl personalised treatment is another opportunity emerging
from applying XAl methods. 9 studies state that XAl can
enhance the accuracy of traditional ML systems. These
findings indicate the practical implications and goals of
leveraging XAl in healthcare, which builds confidence
among clinicians and ensures real-world applicability. This
evidence suggests that XAl not only benefits model
interpretability but also improves model performance. This is
a counter-fact to the misconception that interpretability
compromises accuracy.

3.5  Challenges per Study

Figure 4 illustrates the challenges that were faced in the
reviewed studies. This research identified four factors that
affect the adoption of ML in the early diagnosis of diabetic
retinopathy.

Table 3. Opportunities per Publication

Opportunity Occurrence (studies)
Integration into clinical practice 7
Leveraging resources with lower 1

computational power.

Enhanced trust 8
Personalized treatment 3
Enhanced Accuracy 9
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Figure 4. Challenges per study

Five (5) studies highlight that the complexity of XAl
methods poses a challenge for leveraging these tools in
diabetic retinopathy diagnosis. 2 studies state that XAl
techniques have demanding resource requirements. 1 out of
the reviewed studies mentions that XAl techniques may be
difficult to integrate with existing systems. The challenge of
dataset limitations in data training is mentioned in 3 studies
in the review.

3.6 Ethical Implications of XAl

Table 4 shows the ethical implications that were flagged
in each reviewed study. Nine (9) studies highlight that
transparency is an ethical implication when it comes to using
XAl systems in diagnosing diabetic retinopathy. Twelve (12)
studies suggest that the use of XAl techniques raises the issue
of bias and fairness, especially in training datasets. Clinical
responsibility is another ethical issue to consider when
dealing with XAl tools, as 10 studies mention that fact. The
reviewed studies did not discuss legal accountability or
regulatory approval issues, which are crucial for real-world
implementation. This suggests a need for further research
involving experts in the legal sector, clinicians, and ethicists
to anticipate involved risks.

This section gives a discussion that answers the research
questions posed in this study.

3.7 Emerging Trend

From the 13 reviewed studies, several emerging trends
have been observed. CNNs (Convolutional Neural Networks)
were the widely leveraged baseline models, mainly combined
with explanatory tools like GRAD-CAM or LIME.

Table 4. Ethical Implications per Publication

Implication Occurrence (studies)
Transparency 9
Bias and Fairness 12
Clinical Responsibility 10
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Across several datasets, these hybrid combinations
resulted in high classification performance. Ref. [14] reported
95% accuracy by combining CNN and LIME, and [19]
reported 93.01% leveraging CNN, Grad-CAM and LIME.
Despite this, performance varied depending on the objectives,
for example, the study by [26] achieved 98.34% accuracy,
Class Activation Mapping (CAM) with CNN using retinal
images as data input, without providing sensitivity and or
specificity. Ref. [27] used achieved 99.37% accuracy using
both clinical and retinal image data.

In contrast to this, the Explainable Boosting Machine
(EBM) was used in the study by and SHAP-based models
were used by [33], [29], were effective with structured data
such as metabolomic and demographic features, providing a
more transparent view into feature importance but with
modest accuracy values (89%). These observations prove that
hybrid models (combining CNN-based architectures with
XAl tools (LIME, SHAP) offer a balance between
performance and explainability, but it is important to note that
no single XAl tool fits all clinical solutions.

3.8 What Data Inputs Significantly Influence the
Performance of Explainable Artificial Intelligence
(XAI) Models in Detecting Diabetic Retinopathy?

Retinal images: Retinal images refer to photographic
visualisations of the eye's surface, usually captured
using special tools like fundus cameras [34]. The
study by [19] used fundus retinal images from the
APTOS 2019 dataset for data training. The research
by [21] and [27] also uses retinal images, which are
fundus images (for visualising retinal structures),
and Optical Coherence Tomography Angiography
(OCTA) images, which provide insights into blood
flow in the retina. The study by [32] used two
datasets from OPHDIAT and EyePACS to obtain
images for learning (model training). These images
are useful in classification training that leads to the
prediction of diabetic retinopathy. XAl techniques
like Grad-CAM use these retinal images to create
heatmaps that showcase areas that the model focuses
on for making decisions [35].

Clinical data: The study by [36] uses clinical data as
data inputs for training in the early diagnosis of
diabetic retinopathy among type 2 diabetic patients,
which comprises clinical indicators like duration of
diabetes, glycated haemoglobin (HbAlc) and
systolic blood pressure (SBP). This is further
supported by [29] where they utilised biochemical
data, including glycine and creatinine, to better
understand their role in diabetic retinopathy
progression. Clinical data is useful in providing
more context in data training, other than just using
retinal images. Involving more features may lead to
improved performance of XAl tools when it comes
to decision-making, because these XAl tools rely on
large datasets to make accurate decisions [37]. The
research by [30] utilised demographic data that

3.8.1

3.8.2
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included age and BMI, as age is a factor in the
likelihood of being affected by diabetic retinopathy.

3.8.3  Labelled data: The research carried out by [32] used
a labelled image dataset which is categorised into
No_ DR, Mild, Moderate, Severe and Proliferative,
based on the International Clinical Diabetic
Retinopathy (ICDR) severity scale. Other authors
ike [25], [29] also used labelled images to help train
their models. Alternatively, the study by [23] used a
set of labelled images (35,126) and unlabeled images
(53,576), which could be useful to determine how
the model generalises unlabeled data in the real
world, making XAl systems more accurate.

3.8.4  Metabolomic data: Metabolomic data is the
quantitative measurement of metabolites found in
biological samples that can provide useful insights
into the biochemical state of cells within an
organism [38]. The research by [29] used
metabolomics data, which included serum samples
from patients and 122 metabolites were selected for
the model across various diabetic retinopathy patient
groups. The research by [36] supports the use of
metabolomic data, as serum samples were analysed
to get 532 metabolites, which were further
preprocessed to help identify diabetic retinopathy in
type 2 diabetes patients. This may be useful in
tracking the progression of diabetic retinopathy, as
changes in metabolites may be correlated with the
progression of the disease, which could aid in
efficiently monitoring it.

3.9 What Innovative Explainable Artificial Intelligence
Techniques are Emerging as Pivotal Tools in the Early
Diagnosis of Diabetic Retinopathy?

3.9.1 Local Interpretable Model-agnostic Explanations
(LIME is atechnique used in ML to explain complex
models transparently [39]. LIME is used in
providing explanations for varying instances and
also identifying critical features of the model [40].
This leads to increased transparency. The study by
[19] used the LIME technique to develop a Res-ViT
model that is capable of automated DR grading in
retinal images, which saw the accuracy rocket to
93.01%. While LIME's simplicity facilitates
clinician understanding, it does not provide insights
into the model's behaviour across the entire dataset
due to a lack of global explanation [41], which limits
its utility for a comprehensive understanding.LIME):

3.9.2  SHapley Additive exPlanations (SHAP): SHAP is a
technique used when applying interpretability to ML
models by calculating how much each feature
contributes to the final predictions of the model
using SHapley values [42]. SHAP is useful when it
comes to explaining model predictions, analysing
feature importance, and providing global and local
predictions [39]. Ref. [21] leveraged SHAP in a
multimodal image fusion approach for diabetic
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retinopathy detection, showing a good accuracy of
94.32% even when it was trained with 90% of the
data. The SHAP technique is limited in the sense that
it has a high computational cost due to the Kernel
SHAP approach, which has a quadratic time
complexity in relation to both the dimensionality and
size of the dataset, which can be prohibitive for
larger datasets [43].

Explainable Boosting Machine (EBM): EBM is a
modelling method that is leveraged to enhance the
interpretability of ML models while maintaining a
good predictive performance measure [44]
achieving an accuracy of 87%. Ref. [30] applied this
technique to improve diagnostic precision and
incorporate  biomarker discovery in diabetic
retinopathy diagnosis. These papers show that the
ability of EBM to represent the model as a sum of
learned functions for each predictor makes the
contributions of each variable transparently visible.
Despite that, EBM is strong on tabular data instead
of unstructured data, making it less suitable for
image classification [45].

Gradient-weighted Class Activation Map (Grad-
CAM): Grad-CAM is an interpretability technique
that is used to outline and visualise the decision-
making process of Convolutional Neural Networks
(CNNs) in image classification processes [46].
Grad-CAMs are useful in generating heat maps,
highlighting important features and improving
model interpretability [35] While being so
advantageous, Grad-CAM struggles to localise
multiple occurrences of the same class within a
single image, which can limit its effectiveness in
complex situations like less clear images [47].

How might Explainable Artificial Intelligence
Techniques Create New Pathways for Improving
Early Detection Outcomes in Diabetic Retinopathy?

3.10.1 Personalised treatment: Personalised treatment

refers to treatment that is tailored to individuals
based on their characteristics, including genes,
lifestyle, and environment, to develop an effective
treatment strategy/plan for them [48]. Healthcare
providers can leverage XAl and ML to streamline
treatment regimens [49]. The research by [29]
highlights that XAl supports personalised treatment
strategies, whereby the collaboration between
clinicians and Al systems enables tailored treatment
plans that will ultimately improve patient outcomes.
This was further affirmed by [24], where
personalised treatment is stated as a strength in
managing diabetic retinopathy. The study [34]
utilised biomarkers for early detection of diabetic
retinopathy, allowing continuous monitoring of the
condition and tailored treatment. This is crucial in
the efficient management of diabetic retinopathy,
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taking into account varying patient profiles, leading
to efficient treatment.

Integration into clinical practice: Integrating XAl
with existing clinical processes leads to more
positive health outcomes for patients, making it
suitable for real-world application [50]. The studies
[16], [19], [51], [52] agree that XAl is crucial in
improving clinical decision-making and providing
reliable systems with flexible usability. Integration
can include systems like 10T systems [53], Smart
Technologies [54], Quantified Self Technologies
[55], [56], [48] which could help in continuous
patient monitoring and automated predictions.
Regulatory Compliance: Both [57] and [58] discuss
that XAl is important when it comes to compliance
with regulatory standards such as GDPR, which
requires clear explanations when it comes to
decisions that affect patient outcomes. By adhering
to these standards, the role of health practitioners and
XAl is made clear by defining specific roles and
responsibilities, leading to accountability and patient
safety during diagnostic processes [59].

Increased Trust: Making Al-based systems much
more interpretable allows clinicians to gain trust in
these systems, which will drive the acceptance of Al
into the medical field [26]. The studies [13], [19],
[21], [26], [30] affirm that as trust increases, it will
drive the growth of Al-based systems in the
healthcare industry by allowing clinicians and
patients to understand how Al systems work, which
improves collaboration, ultimately leading to
improved patient outcomes.

Increased Accuracy: The study by [18] utilized the
ExplAIn framework and achieved high accuracy
through end-to-end training and using a generalised
occlusion method to reduce fake positives, leading
to a focus on relevant lesions, thereby boosting
accuracy. Similarly, the study by [36] highlights
increased accuracy and effective robustness against
overfitting and the combination of clinical and
metabolomics data.

3.10.2

3.10.3

3.10.4

3.105

3.11  What Challenges need to be Addressed when
Incorporating Explainable Artificial Intelligence
Techniques into the Early Detection Processes for
Diabetic Retinopathy?

Integration into existing systems: The research by
[58] raises the issue of human interpretability,
stating that these XAl systems should be able to be
understood even by non-expert users, which may be
a problem given their complexity. The study [30]
highlights that it is difficult to integrate XAl into
existing systems because of the complexity of
medical data and the fact that clinicians may need
further training to be able to effectively use these
systems.

3.111
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3.11.2 Complexity: The complexity of XAl techniques is
worth noting as a concerning challenge. A study by
[32] demonstrates that XAl techniques deal with
high-dimensional data, which usually complicates
feature selection. Also, as much as these techniques
seek to improve model interpretability, it may be
difficult to understand how they make decisions as
well. The study by [29] further affirms this by
acknowledging the complexity of XAl techniques,
particularly when it comes to implementing them
into clinical practice due to issues like resource
requirements.
Dataset Limitations and Quality: When it comes to
datasets, [51] states that their study utilised a limited
dataset size, which affected the efficiency of the
system when it came to findings and the
interpretations extracted from the XAl model. The
studies [14], [19], [23], [28], [60] further support that
the limitation of datasets when it comes to size is a
hindrance. Other critical dataset challenges are
evident. The study by [61] highlights dataset
labelling inconsistencies in expert annotations,
which may introduce noise in model training.
Differences in imaging equipment, patient
demographics, and clinical settings bring the issue of
domain shift across datasets, which may reduce a
model's performance when subjected to external data
[62].
High computational power resource requirement:
The study done by [57] highlights that there is a huge
trade-off between interpretability and performance,
meaning that achieving a higher accuracy score
while maintaining a high level of transparency may
need system resources and hardware that can handle
the high resource demand of this complex task.
Resource constraints pose a notable challenge when
it comes to XAl, as using it may require more
resources than the healthcare facility may be able to
meet. [26] highlights that low computational power
resources may result in misleading interpretations
due to inefficiency.

3.11.3

3.114

While related, the relationship between XAl complexity
and demanding resource requirements is distinct in the sense
that complexity refers to the intricacy of the XAl techniques
in detecting diabetic retinopathy, while demanding resource
requirements relates to the computational power required to
implement and execute the models [63]. Despite the
distinction, these two features are interconnected as the
complexity of the models increases, so do the resource
requirements. Addressing these challenges leads to a balance
between model performance and efficient use of resources
[64].
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3.12  What are the Ethical Implications of Using

3.121

3.12.2

3.12.3

Explainable Artificial Intelligence Models for
Detecting Diabetic Retinopathy in Clinical Practice?

Transparency: There is potential for bias when it
comes to training data, usually due to
unrepresentative datasets, which may affect the
predictive accuracy of the XAl methods across
different populations [30]. The research conducted
by [29] outlines the use of SHAP as a method that
provides useful insight into the model's predictions
in diabetic retinopathy, improving transparency.
This transparency is important for clinicians to
understand the recommendations made by XAl
tools, enhancing trust and widespread adoption by
practitioners. The study by [16] further supports this
point by stating that the transparency enabled by
XAl methods means that the systems are more likely
to be accepted by clinicians. This is so because they
can explain and justify the Al's actions to the
patients, meaning that engaging and educating
populations about diabetic retinopathy becomes
easier and effective, leading to better management of
the disease.

In clinical settings, there is a trade-off between
explainability and accuracy, as algorithms may be
highly transparent but sacrifice accuracy, or it could
be the other way around [65]. This can be frustrating
for doctors and patients who want to know the
reasoning behind a diagnosis. Explainable Al (XAI)
tries to make these models more understandable, but
making them easier to explain can sometimes mean
giving up a bit of accuracy. Finding the right balance
between performance and clarity is essential to using
Al responsibly and effectively in healthcare [66].

Bias and Fairness: The research carried out by [25]
suggests that XAl is capable of addressing biases
that may exist within Al systems by clarifying the
decision-making processes of those systems. This
gives room for criticising and adjusting the models
to ensure fairness among all diabetic retinopathy
patients. The study by [15] also points out that XAl
is essential in providing fair treatment and reducing
discrimination in decisions related to healthcare, in
this case, diagnosing diabetic retinopathy. Reducing
biases and improving fairness leads to the timely
diagnosis of diabetic retinopathy because factors
such as race and gender are eliminated, focusing all
the resources on diagnosis and treatment.

Regulatory Compliance: There are substantial
regulatory challenges to incorporating XAl models
into clinical applications for diagnosing diabetic
retinopathy. In the context of healthcare Al, almost
all Al products are categorised as medical devices
and are subject to rigorous approval processes by
agencies like the FDA in the United States, the EMA
in Europe, or national health authorities [67]. These
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involve validation processes, documentation of
clinical safety, risk management and post-market
surveillance, which many Al models (in particular
those developed quickly or trained using non-
standardised data) are likely to find challenging.
Furthermore,  despite offering some level of
interpretability, current laws may not supply explicit
thresholds on how much transparency is required for
clinical approval [68]. There is uncertainty as to who
would be legally at fault: a developer, a health care
provider, or an institution, if something goes wrong
and an Al system makes an incorrect prediction.
Beyond that, models need to adhere to data
protection laws, such as GDPR in the EU or HIPAA
in the U.S., that require strict control over how
patient data is collected, processed, and integrated
with other data. But laws were not drafted with Al in
mind, and this legal terrain is complicated to
navigate.
Clinical responsibility: The study by [36] highlights
the need for accountability when it comes to Al-
based diagnostic processes, posing questions about
who is responsible for the mistakes made by the Al
model during the diagnosis of diabetic retinopathy.
This may be useful in clarifying the role of XAl, the
medical institution or the practitioners in the case of
misdiagnosis, including lawsuits that may arise
between the patient and the mentioned parties. The
research by [29] further affirms this point by stating
that clinicians need to be in control of these Al tools,
making sure that they do not replace human
judgment, but rather support it. While Al can
enhance the accuracy of diagnostic models, the
responsibility for patient care remains in the hands
of healthcare professionals [16]. A successful data
breach could lead to theft or loss of important
healthcare information, which could be used for
wrong purposes, like identity theft [69]. There is also
a need for informed consent from the healthcare
sector when dealing with sensitive patient data,
making sure that patients understand that Al
technology is involved in their diagnostic process,
and this helps them make informed decisions and
improve their trust in healthcare systems [70].

Implications

The findings in this study indicate that the introduction of
XAl, in combination with ML models, can significantly
improve the early diagnosis of diabetic retinopathy. This
ensures flexibility and interaction between patients and
caregivers, which could lead to improved healthcare.
Predicting health outcomes, as in the case of early detection
of diabetic retinopathy, leads to more informed decisions both
for the caregiver and the patient on how to handle the disease
progression and efficient treatment. This is especially crucial
in involving patients in their treatment process, leading to a
patient-centred approach. This study is also important as it
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contributes to the rapidly growing literature and outlines the
work of other authors, as well as the impact of their studies.
This presents enormous opportunities, such as the use of Al
with wearable devices like smart wristbands, which could
enable diagnosis to be done on the go, regardless of location.
Practical implementation

The study focuses on the potential that XAl presents,
especially in the healthcare system, to assist practitioners in
enhancing diagnostic accuracy and patient outcomes when it
comes to diabetic retinopathy. This introduces
technologically advanced initiatives for healthcare
professionals while allowing policymakers and regulators to
implement effective policies while keeping up with rapid
technological advancements. The findings in this study
highlight the importance of efficient training and not
neglecting data privacy in the process. Furthermore, most
studies were conducted in countries with significantly
stronger economies, indicating that more research and
alternative perspectives from developing countries are needed
to gather diverse facts that could lead to even better
innovations. Based on this study, the author highlights the
strong potential for expanding the use of Al-based diabetic
retinopathy tools beyond clinical settings. As interesting as
the idea of self-quantification and early diabetic retinopathy
monitoring is, it is essential to note the clinical, regulatory,
and ethical considerations involved (e.g., Potential misuse of
the technology by patients). The diagnosis of diabetic
retinopathy requires high-quality fundus imagery and expert
intervention, which can be challenging to access, may require
substantial financial investments, and may be difficult to fully
integrate into consumer-grade applications for use by the
general population. Therefore, future works must be guided
by clinical validation, expert oversight, and clear standards to
ensure safety and ethical compliance.

3.14 Research Gaps

From the bar graph shown in Figure 2, only 2 studies were
carried out in Africa (South Africa and Nigeria). This
indicates that the topic of diabetic retinopathy has been under-
researched, which may be due to limitations in healthcare
resources and finances [71]. There is a shortage of studies
specifically applying XAl techniques in diabetic retinopathy
diagnosis, even though XAl has the potential to improve
understanding of the disease and improve patient outcomes
[32].

4 CONCLUSION

This study focuses on using XAl to diagnose early stages
of DR and has several novel contributions to the current body
of literature. We observed several interesting gaps, especially
in the area of integrating XAl with classical machine learning
(ML) techniques. Though CNNs have achieved promising
performance on conventional diagnostics, they remain
opaque and uninterpretable methods. We stress that the
combination of XAl methods with CNNs may help to
circumvent these limitations by efficiently explaining model
decision processes. This hybrid not only increases clinician
trust but also enables more realistic deployment in clinical
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practice. In addition, the study categorised different XAl
techniques and particular challenges regarding their
application in practice. To enhance application into patient
care, we suggest that further studies need to investigate the
synergy of these predictive models with new technology,
such as wearable sensors, with consideration of ethical
practice. This SLR adds to the knowledge about the potential
of XAl to innovate the detection of diabetic retinopathy and
provides directions for future work. This paper specifically
explores how XAl methods enhance model trust, clinical
interpretability, and ethical operationalisation. In this respect,
it provides a structured view of how certain XAl techniques
serve specific clinical applications. This addresses a key gap
in the literature, as the majority of non-traditional studies
focus on technical performance and often fail to report on
real-world usability and clinician-facing functionality.
Furthermore, our study brings to light the underrepresentation
of low-resource regions, particularly Africa, in XAl-related
diabetic retinopathy research. Despite a significant diabetes
burden in these areas, there is limited deployment and testing
of interpretable models in such contexts. Our analysis
encourages the development of lightweight, explainable
models optimised for low-infrastructure settings and
emphasises the need for broader geographic inclusion in
validation efforts. Importantly, while previous reviews
typically report model accuracy (frequently exceeding 90%),
they neglect to discuss other critical clinical diagnostic
performance metrics such as sensitivity, specificity, positive
predictive value (PPV), and negative predictive value (NPV).
These measures are essential for evaluating how closely a
model mimics clinical decision-making. This review
highlights that omission and strongly recommends these
metrics be standardised across future studies to better reflect
real-world diagnostic utility.
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