
DOI:10.14421/ijid.2025.5200                                                 IJID (International Journal on Informatics for Development), e-ISSN: 2549-7448 

 Vol. 14, No. 2, December 2025, Pp. 616-628  

 

 

Early Detection of Diabetic Retinopathy Through 

Explainable AI Models: A Systematic Review 
 

 

Tinashe Ngwazi 

Department of Informatics and Analytics 

National University of Science and Technology 

Bulawayo, Zimbabwe 

tinashengwazi@gmail.com 

 

Belinda Ndlovu 

Department of Informatics and Analytics 

National University of Science and Technology 

Bulawayo, Zimbabwe 

belinda.ndlovu@nust.ac.zw 

 

 

 

Kudakwashe Maguraushe 

School of Computing 

University of South Africa  

Johannesburg, South Africa 

magark@unisa.ac.za 

 

Article History 

Received May 12th, 2025  

Revised August 1st, 2025 

Accepted August 4th, 2025 

Published December 2025

 

 
Abstract— Diabetes, if not detected early, can lead to serious complications such as vision loss, known as diabetic retinopathy. 

Explainable Artificial Intelligence (XAI) can enhance traditional Machine Learning methods, which are not understandable and 

transparent in diagnostic tasks. This Systematic Literature Review explores data inputs that influence the performance of XAI models 

in detecting diabetic retinopathy, how XAI techniques can enhance early detection outcomes in diabetic retinopathy, the challenges 

in implementing these techniques and the ethical implications of using these models in clinical practice. The Preferred Reporting 

Items for Systematic Reviews and Meta-Analyses approach guided the search in 4 databases, Springer, Science Direct, PubMed and 

IEEE Xplore. The findings reveal that XAI techniques like Local Interpretable Model-agnostic Explanations (LIME), SHapley 

Additive exPlanations (SHAP) and Gradient-weighted Class Activation Mapping (GRAD-CAM) offer opportunities like early 

detection outcomes, integration with existing clinical processes, enhancing trust in AI systems, improving accuracy and personalised 

treatment. XAI can also facilitate collaboration among clinicians, maintaining fairness in AI systems and supporting adherence to 

ethical standards. However, research on clinical validation of these models, as well as standardised performance evaluation metrics, 

is lacking.  
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1 INTRODUCTION  

Diabetic retinopathy (DR) is one of the most common 

complications of diabetes, which causes visual impairment 

and blindness, especially in the working-age population [1]. 

It is estimated that once a patient is classified as having 

diabetic retinopathy, it will progress to the vision-threatening 

stage in approximately 11% of patients each year, which 

makes diabetic retinopathy a public health concern [2].  

Detecting diabetic retinopathy in its early stages is vital in 

helping healthcare providers make informed decisions about 

patient management and effective treatment strategies [3]. 

The current management of diabetic retinopathy is based on 

recognising fundus images in earlier stages, using methods 

like fundus photography [4]. In low-income countries where 

there is a lack of healthcare resources [5] and a lack of trained 

caregivers for retinopathy screening and early detection, there 

is growing evidence to support the use of Artificial 

Intelligence (AI) in screening the population at risk of sight 

loss due to diabetic retinopathy complications [6].  

Advances have been made in predicting and managing the 

disease, but most of the ML algorithms fail to give insight 

beyond the provided data, and they require extensive 

debugging and deciphering to understand them [7]. There is 

a substantial positive impact of promoting the reliance of 

clinicians on AI-based models for early detection of diabetic 

retinopathy, leading to innovative autonomous systems that 

can reduce the costs of screening and address the shortage of 

caregivers in that field [8]. ML is regarded as a concept with 

great success in engineering and sciences, but data-driven 

insights have their limits, especially when it comes to data 

availability [9]. 

Explainable Artificial Intelligence (XAI) is a collection of 

ML techniques that are designed to make AI-based systems 

more interpretable and transparent, allowing the end-users to 

understand and trust these systems [10]. XAI is capable of 

boosting interactivity by facilitating collaborative 

explanations, allowing end-users to engage and manipulate 

inputs to discover varying patterns [11]. XAI is also capable 

of bringing about fairness in AI systems by analysing and 

mitigating biases from training data, and also supports 

adherence to ethical standards to ensure the responsible use 

of AI systems [12]. 

Ref. [13] and [14] identified opportunities in XAI, 

highlighting that it has the potential to utilise low 

computational resources, meaning that XAI can be more 

accessible even to smaller healthcare facilities with low 

budgets. Ref. [15], [16], [17] highlight the opportunity that 

XAI creates to make AI systems more understandable, 

increasing trust and adoption by clinicians. Ref. [18], [19], 

[20] all use fundus image datasets in their studies, showing 

that the most commonly used type of data in the early 

detection of diabetic retinopathy is retinal image data. Ref. 

[21] identified the challenges of implementing XAI in clinical 

settings, stating the scarcity of high-quality data needed for 

training models as well as the difficulty in complying with 

regulatory and ethical guidelines, which mostly complicate 

the implementation of these AI-based systems. 

Despite all the research on XAI in predictive models, 

existing studies tend to focus more on general ophthalmologic 

applications. This manuscript provides a focused review of 

how XAI has been applied in the early diagnosis of diabetic 

retinopathy, adding novelty by including the types of data 

inputs and analysing the ethical implications of XAI, to 

highlight the effects of applying this technology, whether 

positive or negative. Our research questions are: 
1. What data inputs significantly influence the performance 

of XAI models in detecting diabetic retinopathy? 

2. What innovative XAI techniques are emerging as pivotal 
tools in the early diagnosis of diabetic retinopathy? 

3. How might XAI techniques create new pathways for 
improving early detection outcomes in diabetic 
Retinopathy? 

4. What challenges need to be addressed when incorporating 
XAI techniques into the early detection processes for 
diabetic retinopathy?  

5. What are the ethical implications of using XAI models for 
detecting diabetic retinopathy in clinical practice? 

  

2 METHOD 

A Systematic Literature Review was used to answer the 

posed questions, with the Preferred Reporting Items for 

Systematic Reviews and Meta-Analyses (PRISMA) approach 

applied in the identification, screening, and determining the 

eligibility of studies. This review uses quantitative analysis to 

understand the findings and collected data. 

Science Direct, Springer, PubMed and IEEE Xplore were 

used as databases for searching relevant literature. Various 

specific keywords and synonyms were used to search the 

databases. The search string used Boolean connectors, which 

were layered as follows: ("early detection" OR "early 

diagnosis") AND ("diabetes retinopathy" OR "diabetic 

retinopathy") AND ("explainable AI" OR "interpretable AI" 

OR "explainable artificial intelligence" OR "interpretable 

machine learning". To enhance the reproducibility of our 

search results, the number of results associated with key terms 

in the search string was recorded as follows: ("early 

detection" OR "early diagnosis") = 178, ("diabetes 

retinopathy" OR "diabetic retinopathy") = 202, ("explainable 

AI" OR "interpretable AI" OR "explainable artificial 

intelligence" OR "interpretable machine learning") = 299. 

Some of the combinations were overlapping, which means 

individual block counts did not sum up to 202 studies. In this 

case, the Boolean logic ensured that only the studies that 

appeared in all three blocks were included in the final query. 

The search was executed on 3 February 2025.  

Due to the large number of articles found in online 

databases, the search string returned thousands of papers, a 

large number of which were irrelevant. In this case, the focus 

was on studies directly related to the use of XAI in diabetic 

retinopathy detection; studies strictly written in the English 

language and published from 2020 to 2025. The choice to 

focus on the studies in the specified period was based on the 

notion that recent studies reflect current challenges and 
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technologies and provide more context that may be useful for 

future research. Studies were excluded if they were non-peer-

reviewed, non-original research, like commentaries and 

reviews, less detailed (lack of description for the ML, AI tool 

applied or performance metrics), and studies applying XAI 

outside the context of diabetes retinopathy or early detection. 

To assess the methodological quality and risk of bias of the 

included studies, we applied the QUADAS-2 tool, which is a 

validated instrument for evaluating diagnostic accuracy 

studies. BN evaluated Patient Selection, focusing on whether 

the studies used a representative sample of patients, 

specifically, individuals whose retinal images were included 

for diabetic retinopathy detection and whether any 

inappropriate exclusions were made (e.g., excluding mild 

cases or poor-quality images without justification). KM 

assessed the Reference Standard, examining whether the 

expert annotation of retinal images was valid and consistently 

applied; studies involving multiple expert graders or 

clinically verified labels were rated as low risk. TN reviewed 

the index test and the flow and timing domains, determining 

whether the ML/AI technique was applied consistently across 

all subjects. Studies that followed a consistent protocol scored 

low bias risk. The limitations in using this method are that 

extracting data from the selected studies can be prone to 

human error, and also variations in the reporting style of the 

papers may make it difficult to maintain consistency in 

comparing results. To overcome these limitations, the authors 

applied double data extraction, whereby two reviewers, TN 

and BN, extracted data separately and resolved any 

discrepancies through discussion with KM. All authors also 

set clear inclusion and exclusion criteria to focus on studies 

that meet a specific reporting standard (PRISMA in this case), 

to address the issue of variations in reporting style. 

A total of 202 were identified through four electronic 

databases:  Springer =146, IEEE Xplore = 8, PubMed = 6 and 

Science Direct = 42. 

After removing 4 duplicate records, 198 records remained 

for title and abstract screening. Of these, 125 records were 

excluded because their titles did not specifically align with 

the research topic (unrelated to diabetic retinopathy or 

ML/XAI). 

A total of 43 full-text articles were assessed, and 13 

studies were excluded for lacking sufficient detail about the 

machine learning techniques or XAI methods applied. A 

further 13 studies were removed as they focused on treatment 

strategies and general ophthalmology, with no application of 

algorithms and XAI techniques. 3 Studies were excluded for 

not providing algorithm accuracy. 1 study was not written in 

the English language, leading to exclusion. Following the 

overall eligibility assessment, 13 studies met all inclusion 

criteria and were included in the final quantitative synthesis 

and methodological quality assessment. 
 

3 RESULT AND DISCUSSION 

The following PRISMA diagram in Fig. 1 shows the 

identification and screening of records from the searched 

databases. Figure 1 shows a Prisma flow diagram to illustrate 

the process of identifying and screening records from the 

selected databases. The process led to the selection of 13 

studies that satisfied the inclusion criteria. These studies are 

given in Table 1. 

 

3.1 Number of Publications per Continent 

Figure 2 shows a bar graph that represents the studies 

published for each continent. From the bar chart in Fig. 2, 

Asia (6 publications) has a high prevalence of studies and 

research when it comes to diabetic retinopathy, which may be 

attributed to the large population of people with diabetes 

mellitus in India [22].  
 

Figure 1. Prisma flow diagram 

 

Figure 2. Number of publications per continent
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Table 1. Papers that Met the Inclusion Criteria 

 

Author  

Dataset 

Used Origin Research aim Opportunities Challenges 

ML and XAI 

Algorithms 

Used 

Accura

cy 
Data 

Inputs 

Ethical 

Implication

s 

[23] (Khan 

et al., 

2021) 

Kaggle 

Diabetic 

Retinopathy 

Detection 

Pakistan Diabetic 

Retinopathy 

Detection 

Using VGG-

NIN, a Deep 

Learning 

Architecture 

• Increased 

trust 

• Enhanced 

performance 

• Low 

computing 

resources. 

• Small 

dataset 

• Visual 

Geometry 

Group of the 

University 

of Oxford 

(Vgg16) 

VGG-NiN 

model 

• 85% • Labelling 

informati

on 

• Colored 

image 

data 

• Bias and 

fairness 

• Transpare

ncy 

 

[24] (Taifa 

et al., 

2024) 

EyePACS Bangladesh A hybrid 

approach for 

enhancing 

diabetic 

retinopathy 

• Personalised 

treatment 

• Improved 

accuracy 

• Limited 

dataset 

size 

• Difficult 

to 

interpret 

•  Image 

quality 

variations 

 

• Decision 

trees 

• Random 

forests  

• Support 

Vector 

Machines  

 

• 95.5

0% 

• Labelling 

informati

on 

• Colored 

image 

data 

• Clinical 

responsibi

lity 

•  Data 

privacy 

•  Bias and 

Fairness 

•  

Transpare

ncy and 

interpreta

bility 

 

[25] 

(Shahzad 

et al., 

2024) 

Kaggle 

Diabetic 

Retinopathy 

Detection 

dataset 

South Africa, 

Pakistan 

Developing a 

transparent 

diagnosis 

model for 

Diabetic 

Retinopathy 

Using 

Explainable AI  

• Integration 

with clinical 

systems. 

• Efficient 

patient 

management

. 

• Enhanced 

accuracy. 

• Interpretable 

systems 

• Leverage 

less 

powerful 

computation

al resources. 

• Dataset 

limitation 

• Requires 

powerful 

computati

onal 

resources 

• Lack of 

robust 

preproces

sing 

layers 

• Limited 

use of 

Explainab

le AI 

 

• CNN 

• LIME 

(Local 

Interpretable 

Model-

agnostic 

Explanation

s 

• 95% • Retinal 

images 

• Demogra

phic data 

(age, 

gender, 

BMI) 

• Bias and 

fairness 

• Transpare

ncy 

[26] (Li et 

al 2022)  

Kaggle 

Diabetic 

Retinopathy 

Detection 

dataset 

Malaysia The adoption of 

deep learning 

interpretability 

techniques on 

diabetic 

retinopathy 

analysis 

• Integration 

with clinical 

practices. 

• Increased 

trust 

• Enhanced 

accuracy 

• Need for 

validation 

 

• CAM (Class 

Activation 

Mapping)  

• CNN 

• 98.3

4% 

• Retinal 

images 

 

• Clinical 

responsibi

lity 

[19] (Ikran 

et al 2025) 

Kaggle 

Diabetic 

Retinopathy 

Detection 

dataset 

Pakistan ResViT 

FusionNet 

Model: An 

explainable AI-

driven approach 

for automated 

grading of 

diabetic 

retinopathy in 

retinal images 

• Integration 

with clinical 

processes 

• Improved 

accuracy 

• Enhanced 

trust 

• Enhanced 

interpretabili

ty. 

• Interpreta

bility 

limitation

s 

• Complexi

ty 

• Validatio

n of 

explanatio

ns 

• Variabilit

y in image 

quality 

•  

• Imbalance

d datasets, 

• Need for 

interpreta

ble 

models 

•  

• Grad-CAM 

(Gradient-

weighted 

Class 

Activation 

Mapping) 

• LIME 

(Local 

Interpretable 

Model-

agnostic 

Explanation

s) 

•  

• 93.0

1% 

• Retinal 

images 

 

• Clinical 

responsibi

lity and 

patient 

safety 

• Bias in 

data 

training 

• Transpare

ncy 

[21] 

Bidwai et 

al., 2021) 

 

Kaggle 

Diabetic 

Retinopathy 

Detection 

India Multimodal 

image fusion 

for the detection 

of diabetic 

retinopathy 

using 

• Regulatory 

compliance 

• Enhanced 

trust 

• Improved 

decision 

making 

• Bias and 

fairness 

• Computat

ional 

resource 

requireme

nts 

• Multimodal 

image fusion 

• SHapley 

Additive 

Explanation

s (SHAP) 

•  

• 96.4

7% 

• Image 

data 

 

• Clinical 

responsibi

lity and 

patient 

safety 
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optimised 

explainable AI-

based Light 

GBM classifier 

• Data 

quality 

and 

availabilit

y 

• Complexi

ty 

• Bias in 

data 

training 

• Transpare

ncy Trust 

[27] 

(Parmar et 

al., 2024) 

Kaggle 

Diabetic 

Retinopathy 

Detection 

India, USA, 

Italy, 

Nigeria. 

Artificial 

Intelligence 

(AI) for Early 

Diagnosis of 

Retinal 

Diseases 

• Improved 

accuracy 

• Personalised 

treatment 

• Integration 

into clinical 

practice 

• Lack of 

interpreta

bility. 

• CNN • 99.3

7% 

• Clinical 

data 

(patient 

demograp

hics) 

• Retinal 

images 

• Bias in 

data 

representa

tion 

Clinical 

• Responsib

ility and 

accountab

ility 

[28] . 

(Romero-

Oraá et al., 

2024) 

Kaggle 

Diabetic 

Retinopathy 

dataset 

Spain Attention-based 

deep learning 

framework for 

automatic 

fundus image 

processing to 

aid in diabetic 

retinopathy 

grading 

• High 

accuracy 

• High 

performance  

• Dataset 

limitation

s 

• Lack of 

transparen

cy. 

• CNN • 77.2

% 

• Retinal 

images 

• Transpare

ncy 

• Data 

quality 

• Bias and 

fairness 

[29] 

(Yagin et 

al., 2024) 

Patient 

Cohort 

Norway Hybrid 

Explainable 

Artificial 

Intelligence 

Models for 

Targeted 

Metabolomics 

Analysis of 

Diabetic 

Retinopathy 

• Improved 

decision 

making 

• Integration 

into clinical 

practice 

• High 

accuracy 

• Personalised 

treatment 

• Computat

ional 

resource 

requireme

nts 

• Data 

availabilit

y 

• Complexi

ty 

• SHapley 

Additive 

exPlanations 

(SHAP) 

• 89.5

8% 

• Clinical 

parameter

s (glucose 

levels) 

• Metabolo

mic data 

(glucose, 

amino 

acids) 

• Demogra

phic data 

(age) 

•  

• Clinical 

responsibi

lity and 

patient 

safety 

• Bias in 

data 

• Transpare

ncy 

[30] 

(Yagin et 

al 2023) 

Open Access 

Data on T2D 

Patients 

Norway Explainable 

Artificial 

Intelligence 

Paves the Way 

in Precision 

Diagnostics and 

Biomarker 

Discovery 

• Enhanced 

trust 

• Increased 

accuracy   

• Need for 

validation 

• Integratio

n with 

clinical 

processes 

• Complexi

ty. 

• Explainable 

Boosting 

Machine 

(EBM) 

• 89.3

3 

• Metabolo

mic data 

(metabolit

es 

associated 

with DR), 

• Demogra

phic data 

(age, 

gender, 

BMI) 

• Clinical 

responsibi

lity 

• Bias in 

data 

interpreta

bility 

• Transpare

ncy 

[16] 

(Ahnaf et 

al., 2024) 

Aptos 2019 

Blindness 

Detection 

Dataset 

Bangladesh 

 

Enhancing 

Early Detection 

of Diabetic 

Retinopathy 

Through the 

Integration 

of Deep 

Learning 

Models and 

Explainable AI. 

• Improved 

trust 

• Enhanced 

accuracy 

• Integration 

with clinical 

settings. 

 

• Not 

transparen

t 

• Image 

quality 

variation 

 

• CNN 

•  

• 95.2

7% 

• Retinal 

images 

• Transpare

ncy 

• Clinical 

accountab

ility 

• Bias in 

data 

representa

tion 

[31] 

(Wang et 

al., 2024) 

Diabetes 

Complicatio

n Early 

Warning 

Dataset 

China Prediction and 

analysis of risk 

factors for 

diabetic 

retinopathy 

based on 

machine 

learning and 

interpretable 

models. 

• Basis for 

future 

research 

• Integration 

with clinical 

operations. 

• Enhanced 

trust 

• Data 

availabilit

y 

• SHAP 

Framework 

(SHapley 

Additive 

exPlanations

) 

• 82.5

% 

• Retinal 

images 

• Clinical 

accountab

ility 

• Bias and 

fairness 

[32] 

(Quellec et 

al., 2021) 

OPHDIAT France Explanatory 

artificial 

intelligence for 

diabetic 

retinopathy 

diagnosis 

 

 

• Improved 

decision 

making 

• Enhanced 

trust 

 

• Balancing 

explainabi

lity and 

performan

ce 

• Complexi

ty 

 

• ExplAIn, 

• Generalised 

Occlusion 

Method 

•  

• 99.7

8% 

for 

sever

e DR 

• 99.3

9% 

(mod

erate 

DR) 

• Labelled 

data 

• Image 

data 

 

• Bias  

• Clinical 

accountab

ility 
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Europe has the second most publications (4 publications) 
on diabetic retinopathy. Africa has 2 publications, followed 
by 1 study from America. The least number of publications is 
in Antarctica and Oceania, with both continents recording 0 
publications related to diabetic retinopathy. Despite the 
shortage of eye-care professionals and healthcare resources in 
Africa, Africa has 2 publications, revealing a research gap in 
the region. Region-specific research is required to ensure fair 
representation across diverse populations and trigger 
initiatives to support low-resource settings. 

 

3.2 Algorithms Adopted 

Figure 3 shows the count of algorithms that were 

leveraged in each publication. Five (5) studies used CNN as 

the traditional/baseline algorithm of choice for their study. 

SHAP was leveraged by three (3) studies, Gradient-weighted 

Class Activation Map (Grad-CAM) was utilised by 3 studies, 

LIME (2 studies), ExplAIn and EBM (1 study). Leveraging 

these XAI methods with powerful algorithms like CNN could 

boost the results even further and lead to effective hybrid 

models. SHAP and Grad-CAM are the most utilised XAI 

techniques to improve the explainability of the traditional 

algorithms, with both of these techniques amounting to a total 

of 6 studies out of the 13 studies. The consistent appearance 

of CNN architectures enhanced with XAI across the high-

performing studies suggests that hybrid approaches are 

becoming the new standard in clinical decision support 

systems. 

 

3.3 Data Inputs per Study 

Table 2 shows the data inputs that were used to predict 
diabetic retinopathy in each study. Retinal images (11 
studies) are the most common data input in the diagnosis of 
DR, showing their dominance in the early detection of 
diabetic retinopathy. The wide use of retinal images as data 
inputs is due to the visual nature of the condition and the 
reliance on image-based deep learning techniques like CNN. 
Clinical data is also useful, as it is utilised in 4 studies. 
Labelled data (3 studies) is also important as it shows the 
classes present in the datasets used for training. Metabolomic 
data were leveraged in 2 of the reviewed studies. The 
integration of metabolomic, clinical and labelled data with 
retinal images indicates that multimodal fusion of data could 
enhance diagnosis and uncover additional information that 
images alone may otherwise miss. 

 

3.4 Opportunities per Publication 

Table 3 illustrates the number of opportunities that were 

recorded as they appeared in each reviewed study. From the 

table, integration into clinical practice is an opportunity that 

was mentioned in 7 of the reviewed studies.  
 

Figure 3. Algorithms used per study 
 

Table 2. Data Inputs per Study 
Data input Occurrence/studies 

Retinal images 
 

11 

Clinical data 

 

4 

Labeled data 

 

3 

Metabolomic data 2 

 

One study mentioned the ability of XAI methods to 

leverage low-resource computation tools as having good 

potential to enhance diabetic retinopathy diagnosis. Eight of 

the reviewed studies highlighted that XAI can enhance trust 

in AI systems. Out of the reviewed papers, 3 studies agree that 

XAI personalised treatment is another opportunity emerging 

from applying XAI methods. 9 studies state that XAI can 

enhance the accuracy of traditional ML systems. These 

findings indicate the practical implications and goals of 

leveraging XAI in healthcare, which builds confidence 

among clinicians and ensures real-world applicability. This 

evidence suggests that XAI not only benefits model 

interpretability but also improves model performance. This is 

a counter-fact to the misconception that interpretability 

compromises accuracy. 

 

3.5 Challenges per Study 

Figure 4 illustrates the challenges that were faced in the 

reviewed studies. This research identified four factors that 

affect the adoption of ML in the early diagnosis of diabetic 

retinopathy.  

 
Table 3. Opportunities per Publication 

Opportunity Occurrence (studies) 

Integration into clinical practice 
 

7 

Leveraging resources with lower 

computational power. 
 

1 

Enhanced trust 

 

8 

Personalized treatment 

 

3 

Enhanced Accuracy 9 
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Figure 4. Challenges per study 

 

Five (5) studies highlight that the complexity of XAI 

methods poses a challenge for leveraging these tools in 

diabetic retinopathy diagnosis. 2 studies state that XAI 

techniques have demanding resource requirements. 1 out of 

the reviewed studies mentions that XAI techniques may be 

difficult to integrate with existing systems. The challenge of 

dataset limitations in data training is mentioned in 3 studies 

in the review. 
 

3.6 Ethical Implications of XAI 

Table 4 shows the ethical implications that were flagged 

in each reviewed study. Nine (9) studies highlight that 

transparency is an ethical implication when it comes to using 

XAI systems in diagnosing diabetic retinopathy. Twelve (12) 

studies suggest that the use of XAI techniques raises the issue 

of bias and fairness, especially in training datasets. Clinical 

responsibility is another ethical issue to consider when 

dealing with XAI tools, as 10 studies mention that fact. The 

reviewed studies did not discuss legal accountability or 

regulatory approval issues, which are crucial for real-world 

implementation. This suggests a need for further research 

involving experts in the legal sector, clinicians, and ethicists 

to anticipate involved risks. 

This section gives a discussion that answers the research 

questions posed in this study. 

 

3.7 Emerging Trend 

From the 13 reviewed studies, several emerging trends 

have been observed. CNNs (Convolutional Neural Networks) 

were the widely leveraged baseline models, mainly combined 

with explanatory tools like GRAD-CAM or LIME.  

 
Table 4. Ethical Implications per Publication 

Implication Occurrence (studies) 

Transparency 

 

9 

Bias and Fairness 

 

12 

Clinical Responsibility 10 

Across several datasets, these hybrid combinations 

resulted in high classification performance. Ref. [14] reported 

95% accuracy by combining CNN and LIME, and [19] 

reported 93.01% leveraging CNN, Grad-CAM and LIME. 

Despite this, performance varied depending on the objectives, 

for example, the study by [26] achieved 98.34% accuracy, 

Class Activation Mapping (CAM) with CNN using retinal 

images as data input, without providing sensitivity and or 

specificity. Ref. [27] used achieved 99.37% accuracy using 

both clinical and retinal image data.  

In contrast to this, the Explainable Boosting Machine 

(EBM) was used in the study by and SHAP-based models 

were used by [33], [29], were effective with structured data 

such as metabolomic and demographic features, providing a 

more transparent view into feature importance but with 

modest accuracy values (89%). These observations prove that 

hybrid models (combining CNN-based architectures with 

XAI tools (LIME, SHAP) offer a balance between 

performance and explainability, but it is important to note that 

no single XAI tool fits all clinical solutions. 

 

3.8 What Data Inputs Significantly Influence the 

Performance of Explainable Artificial Intelligence 

(XAI) Models in Detecting Diabetic Retinopathy? 

3.8.1  Retinal images: Retinal images refer to photographic 

visualisations of the eye's surface, usually captured 

using special tools like fundus cameras [34]. The 

study by [19] used fundus retinal images from the 

APTOS 2019 dataset for data training. The research 

by [21] and [27] also uses retinal images, which are 

fundus images (for visualising retinal structures), 

and Optical Coherence Tomography Angiography 

(OCTA) images, which provide insights into blood 

flow in the retina. The study by [32] used two 

datasets from OPHDIAT and EyePACS to obtain 

images for learning (model training). These images 

are useful in classification training that leads to the 

prediction of diabetic retinopathy. XAI techniques 

like Grad-CAM use these retinal images to create 

heatmaps that showcase areas that the model focuses 

on for making decisions [35]. 

3.8.2  Clinical data: The study by [36] uses clinical data as 

data inputs for training in the early diagnosis of 

diabetic retinopathy among type 2 diabetic patients, 

which comprises clinical indicators like duration of 

diabetes, glycated haemoglobin (HbA1c) and 

systolic blood pressure (SBP). This is further 

supported by [29] where they utilised biochemical 

data, including glycine and creatinine, to better 

understand their role in diabetic retinopathy 

progression. Clinical data is useful in providing 

more context in data training, other than just using 

retinal images. Involving more features may lead to 

improved performance of XAI tools when it comes 

to decision-making, because these XAI tools rely on 

large datasets to make accurate decisions [37]. The 

research by [30] utilised demographic data that 
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included age and BMI, as age is a factor in the 

likelihood of being affected by diabetic retinopathy.  

3.8.3  Labelled data: The research carried out by [32] used 

a labelled image dataset which is categorised into 

No_DR, Mild, Moderate, Severe and Proliferative, 

based on the International Clinical Diabetic 

Retinopathy (ICDR) severity scale. Other authors 

ike [25], [29] also used labelled images to help train 

their models. Alternatively, the study by [23] used a 

set of labelled images (35,126) and unlabeled images 

(53,576), which could be useful to determine how 

the model generalises unlabeled data in the real 

world, making XAI systems more accurate. 

3.8.4  Metabolomic data: Metabolomic data is the 

quantitative measurement of metabolites found in 

biological samples that can provide useful insights 

into the biochemical state of cells within an 

organism [38]. The research by [29] used 

metabolomics data, which included serum samples 

from patients and 122 metabolites were selected for 

the model across various diabetic retinopathy patient 

groups. The research by [36] supports the use of 

metabolomic data, as serum samples were analysed 

to get 532 metabolites, which were further 

preprocessed to help identify diabetic retinopathy in 

type 2 diabetes patients. This may be useful in 

tracking the progression of diabetic retinopathy, as 

changes in metabolites may be correlated with the 

progression of the disease, which could aid in 

efficiently monitoring it. 

 

3.9 What Innovative Explainable Artificial Intelligence 

Techniques are Emerging as Pivotal Tools in the Early 

Diagnosis of Diabetic Retinopathy? 

3.9.1  Local Interpretable Model-agnostic Explanations 

(LIME is a technique used in ML to explain complex 

models transparently [39]. LIME is used in 

providing explanations for varying instances and 

also identifying critical features of the model [40]. 

This leads to increased transparency. The study by 

[19] used the LIME technique to develop a Res-ViT 

model that is capable of automated DR grading in 

retinal images, which saw the accuracy rocket to 

93.01%. While LIME's simplicity facilitates 

clinician understanding, it does not provide insights 

into the model's behaviour across the entire dataset 

due to a lack of global explanation [41], which limits 

its utility for a comprehensive understanding.LIME):  

3.9.2  SHapley Additive exPlanations (SHAP): SHAP is a 

technique used when applying interpretability to ML 

models by calculating how much each feature 

contributes to the final predictions of the model 

using SHapley values [42]. SHAP is useful when it 

comes to explaining model predictions, analysing 

feature importance, and providing global and local 

predictions [39]. Ref. [21] leveraged SHAP in a 

multimodal image fusion approach for diabetic 

retinopathy detection, showing a good accuracy of 

94.32% even when it was trained with 90% of the 

data. The SHAP technique is limited in the sense that 

it has a high computational cost due to the Kernel 

SHAP approach, which has a quadratic time 

complexity in relation to both the dimensionality and 

size of the dataset, which can be prohibitive for 

larger datasets [43]. 

3.9.3  Explainable Boosting Machine (EBM): EBM is a 

modelling method that is leveraged to enhance the 

interpretability of ML models while maintaining a 

good predictive performance measure [44] 

achieving an accuracy of 87%. Ref. [30] applied this 

technique to improve diagnostic precision and 

incorporate biomarker discovery in diabetic 

retinopathy diagnosis. These papers show that the 

ability of EBM to represent the model as a sum of 

learned functions for each predictor makes the 

contributions of each variable transparently visible. 

Despite that, EBM is strong on tabular data instead 

of unstructured data, making it less suitable for 

image classification [45]. 

3.9.4  Gradient-weighted Class Activation Map (Grad-

CAM): Grad-CAM is an interpretability technique 

that is used to outline and visualise the decision-

making process of Convolutional Neural Networks 

(CNNs) in image classification processes [46]. 

Grad-CAMs are useful in generating heat maps, 

highlighting important features and improving 

model interpretability [35] While being so 

advantageous, Grad-CAM struggles to localise 

multiple occurrences of the same class within a 

single image, which can limit its effectiveness in 

complex situations like less clear images [47].   

 

3.10 How might Explainable Artificial Intelligence 

Techniques Create New Pathways for Improving 

Early Detection Outcomes in Diabetic Retinopathy? 

3.10.1  Personalised treatment: Personalised treatment 

refers to treatment that is tailored to individuals 

based on their characteristics, including genes, 

lifestyle, and environment, to develop an effective 

treatment strategy/plan for them [48]. Healthcare 

providers can leverage XAI and ML to streamline 

treatment regimens [49]. The research by [29] 

highlights that XAI supports personalised treatment 

strategies, whereby the collaboration between 

clinicians and AI systems enables tailored treatment 

plans that will ultimately improve patient outcomes. 

This was further affirmed by [24], where 

personalised treatment is stated as a strength in 

managing diabetic retinopathy. The study [34] 

utilised biomarkers for early detection of diabetic 

retinopathy, allowing continuous monitoring of the 

condition and tailored treatment. This is crucial in 

the efficient management of diabetic retinopathy, 

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/


IJID (International Journal on Informatics for Development), e-ISSN: 2549-7448 

Vol. 14, No. 2, December 2025, Pp. 616-628  

 
This article is distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License. 

See for details: https://creativecommons.org/licenses/by-nc-nd/4.0/ 

624 

taking into account varying patient profiles, leading 

to efficient treatment. 

3.10.2  Integration into clinical practice: Integrating XAI 

with existing clinical processes leads to more 

positive health outcomes for patients, making it 

suitable for real-world application [50]. The studies 

[16], [19], [51], [52] agree that XAI is crucial in 

improving clinical decision-making and providing 

reliable systems with flexible usability. Integration 

can include systems like IoT systems [53], Smart 

Technologies [54], Quantified Self Technologies 

[55], [56], [48] which could help in continuous 

patient monitoring and automated predictions.  

3.10.3  Regulatory Compliance: Both [57] and [58] discuss 

that XAI is important when it comes to compliance 

with regulatory standards such as GDPR, which 

requires clear explanations when it comes to 

decisions that affect patient outcomes. By adhering 

to these standards, the role of health practitioners and 

XAI is made clear by defining specific roles and 

responsibilities, leading to accountability and patient 

safety during diagnostic processes [59]. 

3.10.4  Increased Trust: Making AI-based systems much 

more interpretable allows clinicians to gain trust in 

these systems, which will drive the acceptance of AI 

into the medical field [26]. The studies [13], [19], 

[21], [26], [30] affirm that as trust increases, it will 

drive the growth of AI-based systems in the 

healthcare industry by allowing clinicians and 

patients to understand how AI systems work, which 

improves collaboration, ultimately leading to 

improved patient outcomes. 

3.10.5  Increased Accuracy: The study by [18] utilized the 

ExplAIn framework and achieved high accuracy 

through end-to-end training and using a generalised 

occlusion method to reduce fake positives, leading 

to a focus on relevant lesions, thereby boosting 

accuracy. Similarly, the study by [36] highlights 

increased accuracy and effective robustness against 

overfitting and the combination of clinical and 

metabolomics data. 

 

3.11  What Challenges need to be Addressed when 

Incorporating Explainable Artificial Intelligence 

Techniques into the Early Detection Processes for 

Diabetic Retinopathy?   

3.11.1  Integration into existing systems: The research by 

[58] raises the issue of human interpretability, 

stating that these XAI systems should be able to be 

understood even by non-expert users, which may be 

a problem given their complexity. The study [30] 

highlights that it is difficult to integrate XAI into 

existing systems because of the complexity of 

medical data and the fact that clinicians may need 

further training to be able to effectively use these 

systems. 

   

3.11.2  Complexity: The complexity of XAI techniques is 

worth noting as a concerning challenge. A study by  

[32] demonstrates that XAI techniques deal with 

high-dimensional data, which usually complicates 

feature selection. Also, as much as these techniques 

seek to improve model interpretability, it may be 

difficult to understand how they make decisions as 

well. The study by [29] further affirms this by 

acknowledging the complexity of XAI techniques, 

particularly when it comes to implementing them 

into clinical practice due to issues like resource 

requirements. 

3.11.3  Dataset Limitations and Quality: When it comes to 

datasets, [51] states that their study utilised a limited 

dataset size, which affected the efficiency of the 

system when it came to findings and the 

interpretations extracted from the XAI model. The 

studies [14], [19], [23], [28], [60] further support that 

the limitation of datasets when it comes to size is a 

hindrance. Other critical dataset challenges are 

evident. The study by [61] highlights dataset 

labelling inconsistencies in expert annotations, 

which may introduce noise in model training. 

Differences in imaging equipment, patient 

demographics, and clinical settings bring the issue of 

domain shift across datasets, which may reduce a 

model's performance when subjected to external data 

[62]. 

3.11.4  High computational power resource requirement: 

The study done by [57] highlights that there is a huge 

trade-off between interpretability and performance, 

meaning that achieving a higher accuracy score 

while maintaining a high level of transparency may 

need system resources and hardware that can handle 

the high resource demand of this complex task. 

Resource constraints pose a notable challenge when 

it comes to XAI, as using it may require more 

resources than the healthcare facility may be able to 

meet. [26] highlights that low computational power 

resources may result in misleading interpretations 

due to inefficiency. 

 

While related, the relationship between XAI complexity 

and demanding resource requirements is distinct in the sense 

that complexity refers to the intricacy of the XAI techniques 

in detecting diabetic retinopathy, while demanding resource 

requirements relates to the computational power required to 

implement and execute the models [63]. Despite the 

distinction, these two features are interconnected as the 

complexity of the models increases, so do the resource 

requirements. Addressing these challenges leads to a balance 

between model performance and efficient use of resources 

[64]. 
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3.12 What are the Ethical Implications of Using 

Explainable Artificial Intelligence Models for 

Detecting Diabetic Retinopathy in Clinical Practice?  

3.12.1  Transparency: There is potential for bias when it 

comes to training data, usually due to 

unrepresentative datasets, which may affect the 

predictive accuracy of the XAI methods across 

different populations [30]. The research conducted 

by [29] outlines the use of SHAP as a method that 

provides useful insight into the model's predictions 

in diabetic retinopathy, improving transparency. 

This transparency is important for clinicians to 

understand the recommendations made by XAI 

tools, enhancing trust and widespread adoption by 

practitioners. The study by [16] further supports this 

point by stating that the transparency enabled by 

XAI methods means that the systems are more likely 

to be accepted by clinicians. This is so because they 

can explain and justify the AI's actions to the 

patients, meaning that engaging and educating 

populations about diabetic retinopathy becomes 

easier and effective, leading to better management of 

the disease. 

In clinical settings, there is a trade-off between 

explainability and accuracy, as algorithms may be 

highly transparent but sacrifice accuracy, or it could 

be the other way around [65]. This can be frustrating 

for doctors and patients who want to know the 

reasoning behind a diagnosis. Explainable AI (XAI) 

tries to make these models more understandable, but 

making them easier to explain can sometimes mean 

giving up a bit of accuracy. Finding the right balance 

between performance and clarity is essential to using 

AI responsibly and effectively in healthcare [66]. 

 

3.12.2  Bias and Fairness: The research carried out by [25] 

suggests that XAI is capable of addressing biases 

that may exist within AI systems by clarifying the 

decision-making processes of those systems. This 

gives room for criticising and adjusting the models 

to ensure fairness among all diabetic retinopathy 

patients. The study by [15] also points out that XAI 

is essential in providing fair treatment and reducing 

discrimination in decisions related to healthcare, in 

this case, diagnosing diabetic retinopathy. Reducing 

biases and improving fairness leads to the timely 

diagnosis of diabetic retinopathy because factors 

such as race and gender are eliminated, focusing all 

the resources on diagnosis and treatment. 

3.12.3 Regulatory Compliance: There are substantial 

regulatory challenges to incorporating XAI models 

into clinical applications for diagnosing diabetic 

retinopathy. In the context of healthcare AI, almost 

all AI products are categorised as medical devices 

and are subject to rigorous approval processes by 

agencies like the FDA in the United States, the EMA 

in Europe, or national health authorities [67]. These 

involve validation processes, documentation of 

clinical safety, risk management and post-market 

surveillance, which many AI models (in particular 

those developed quickly or trained using non-

standardised data) are likely to find challenging. 

Furthermore,  despite offering some level of 

interpretability, current laws may not supply explicit 

thresholds on how much transparency is required for 

clinical approval [68]. There is uncertainty as to who 

would be legally at fault: a developer, a health care 

provider, or an institution, if something goes wrong 

and an AI system makes an incorrect prediction. 

Beyond that, models need to adhere to data 

protection laws, such as GDPR in the EU or HIPAA 

in the U.S., that require strict control over how 

patient data is collected, processed, and integrated 

with other data. But laws were not drafted with AI in 

mind, and this legal terrain is complicated to 

navigate. 

3.12.4   Clinical responsibility: The study by [36] highlights 

the need for accountability when it comes to AI-

based diagnostic processes, posing questions about 

who is responsible for the mistakes made by the AI 

model during the diagnosis of diabetic retinopathy. 

This may be useful in clarifying the role of XAI, the 

medical institution or the practitioners in the case of 

misdiagnosis, including lawsuits that may arise 

between the patient and the mentioned parties. The 

research by [29] further affirms this point by stating 

that clinicians need to be in control of these AI tools, 

making sure that they do not replace human 

judgment, but rather support it. While AI can 

enhance the accuracy of diagnostic models, the 

responsibility for patient care remains in the hands 

of healthcare professionals [16]. A successful data 

breach could lead to theft or loss of important 

healthcare information, which could be used for 

wrong purposes, like identity theft [69]. There is also 

a need for informed consent from the healthcare 

sector when dealing with sensitive patient data, 

making sure that patients understand that AI 

technology is involved in their diagnostic process, 

and this helps them make informed decisions and 

improve their trust in healthcare systems [70]. 

 

3.13 Implications 

The findings in this study indicate that the introduction of 

XAI, in combination with ML models, can significantly 

improve the early diagnosis of diabetic retinopathy. This 

ensures flexibility and interaction between patients and 

caregivers, which could lead to improved healthcare. 

Predicting health outcomes, as in the case of early detection 

of diabetic retinopathy, leads to more informed decisions both 

for the caregiver and the patient on how to handle the disease 

progression and efficient treatment. This is especially crucial 

in involving patients in their treatment process, leading to a 

patient-centred approach. This study is also important as it 
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contributes to the rapidly growing literature and outlines the 

work of other authors, as well as the impact of their studies. 

This presents enormous opportunities, such as the use of AI 

with wearable devices like smart wristbands, which could 

enable diagnosis to be done on the go, regardless of location. 

 Practical implementation 

The study focuses on the potential that XAI presents, 

especially in the healthcare system, to assist practitioners in 

enhancing diagnostic accuracy and patient outcomes when it 

comes to diabetic retinopathy. This introduces 

technologically advanced initiatives for healthcare 

professionals while allowing policymakers and regulators to 

implement effective policies while keeping up with rapid 

technological advancements. The findings in this study 

highlight the importance of efficient training and not 

neglecting data privacy in the process. Furthermore, most 

studies were conducted in countries with significantly 

stronger economies, indicating that more research and 

alternative perspectives from developing countries are needed 

to gather diverse facts that could lead to even better 

innovations. Based on this study, the author highlights the 

strong potential for expanding the use of AI-based diabetic 

retinopathy tools beyond clinical settings. As interesting as 

the idea of self-quantification and early diabetic retinopathy 

monitoring is, it is essential to note the clinical, regulatory, 

and ethical considerations involved (e.g., Potential misuse of 

the technology by patients). The diagnosis of diabetic 

retinopathy requires high-quality fundus imagery and expert 

intervention, which can be challenging to access, may require 

substantial financial investments, and may be difficult to fully 

integrate into consumer-grade applications for use by the 

general population. Therefore, future works must be guided 

by clinical validation, expert oversight, and clear standards to 

ensure safety and ethical compliance. 

 

3.14 Research Gaps 

From the bar graph shown in Figure 2, only 2 studies were 

carried out in Africa (South Africa and Nigeria). This 

indicates that the topic of diabetic retinopathy has been under-

researched, which may be due to limitations in healthcare 

resources and finances [71]. There is a shortage of studies 

specifically applying XAI techniques in diabetic retinopathy 

diagnosis, even though XAI has the potential to improve 

understanding of the disease and improve patient outcomes 

[32]. 
 

4 CONCLUSION 

This study focuses on using XAI to diagnose early stages 

of DR and has several novel contributions to the current body 

of literature. We observed several interesting gaps, especially 

in the area of integrating XAI with classical machine learning 

(ML) techniques. Though CNNs have achieved promising 

performance on conventional diagnostics, they remain 

opaque and uninterpretable methods. We stress that the 

combination of XAI methods with CNNs may help to 

circumvent these limitations by efficiently explaining model 

decision processes. This hybrid not only increases clinician 

trust  but also enables more realistic deployment in clinical 

practice. In addition, the study categorised different XAI 

techniques and particular challenges regarding their 

application in practice. To enhance application into patient 

care, we suggest that further studies need to investigate the 

synergy of these predictive models with new technology, 

such as wearable sensors, with consideration of ethical 

practice. This SLR adds to the knowledge about the potential 

of XAI to innovate the detection of diabetic retinopathy and 

provides directions for future work. This paper specifically 

explores how XAI methods enhance model trust, clinical 

interpretability, and ethical operationalisation. In this respect, 

it provides a structured view of how certain XAI techniques 

serve specific clinical applications. This addresses a key gap 

in the literature, as the majority of non-traditional studies 

focus on technical performance and often fail to report on 

real-world usability and clinician-facing functionality. 

Furthermore, our study brings to light the underrepresentation 

of low-resource regions, particularly Africa, in XAI-related 

diabetic retinopathy research. Despite a significant diabetes 

burden in these areas, there is limited deployment and testing 

of interpretable models in such contexts. Our analysis 

encourages the development of lightweight, explainable 

models optimised for low-infrastructure settings and 

emphasises the need for broader geographic inclusion in 

validation efforts. Importantly, while previous reviews 

typically report model accuracy (frequently exceeding 90%), 

they neglect to discuss other critical clinical diagnostic 

performance metrics such as sensitivity, specificity, positive 

predictive value (PPV), and negative predictive value (NPV). 

These measures are essential for evaluating how closely a 

model mimics clinical decision-making. This review 

highlights that omission and strongly recommends these 

metrics be standardised across future studies to better reflect 

real-world diagnostic utility. 
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