Factors Affecting Peer-to-Peer (P2P) Lending Bad Debts in Java and Sumatra
DOI:
https://doi.org/10.14421/jai.2025.4.1.067-080Keywords:
Peer-to-Peer (P2P) lending, bad debts, Java Island, Sumatra IslandAbstract
Purpose: This study aims to analyse the factors that influence bad debts in Peer-to-Peer (P2P) lending platforms in Jawa and Sumatra. The emergence of fintech as an alternative financing solution for the public and UMKM has created new challenges in the form of high credit risk. This study is motivated by the rapid growth of the fintech industry in Indonesia and the limited academic studies comparing credit risk based on geographical region.
Methodology: This study uses monthly time series secondary data for the period January 2021 – December 2024 obtained from the OJK Fintech Lending Statistics report. This study uses the Autoregressive Distributed Lag (ARDL) method to see the short-term and long-term effects of the variables of loan amount, loan purpose (individual and business entity), and male and female debtors.
Findings: The results showed that the amount of the loan did not have a significant effect on bad debts. Meanwhile, other variables have a significant effect on bad debts.
Novelty: This research has novelty in terms of region; the research focuses on two regions in Indonesia, namely Jawa and Sumatra. These two regions were chosen because they have different economic characteristics of infrastructure and access to financial services.
Downloads
Abstract viewed: 121 times
|
PDF downloaded = 103 times
References
Ahdiat, A. (2024). Penetrasi Internet di Indonesia Capai 79% pada 2024. Databoks. https://databoks.katadata.co.id/teknologi-telekomunikasi/statistik/20b52cfd83df05e/penetrasi-internet-di-indonesia-capai-79-pada-2024#:~:text=Didukung Oleh&text=Menurut Asosiasi Penyelenggara Jasa Internet,Sulawesi: 68%2C35%25
Albanna, H. (2022). Does Borrower Domicile Influence the Credit Default in P2P Lending? Preliminary Analysis from Indonesia. Journal of Accounting Inquiry, 1(2), 074–083. https://doi.org/10.14421/jai.2022.1.2.074-083
America. (2025). Inklusi Keuangan untuk Perempuan: Mendorong Kemandirian Ekonomi. https://atamerica.or.id/id/inklusi-keuangan/
Baesens, B., Van Gestel, T., Stepanova, M., Van Den Poel, D., & Vanthienen, J. (2005). Neural network survival analysis for personal loan data. Journal of the Operational Research Society, 56(9), 1089–1098. https://doi.org/10.1057/palgrave.jors.2601990
Berger, S. C., & Gleisner, F. (2009). Emergence of Financial Intermediaries in Electronic Markets: The Case of Online P2P Lending. Business Research, 2(1), 39–65. https://doi.org/10.1007/BF03343528
Cai, S., Lin, X., Xu, D., & Fu, X. (2016). Judging online peer-to-peer lending behavior: A comparison of first-time and repeated borrowing requests. Information and Management, 53(7), 857–867. https://doi.org/10.1016/j.im.2016.07.006
Chen, D., Li, X., & Lai, F. (2017). Gender discrimination in online peer-to-peer credit lending: evidence from a lending platform in China. Electronic Commerce Research, 17(4), 553–583. https://doi.org/10.1007/s10660-016-9247-2
Dietrich, A., & Wernli, R. (2017). What Drives the Interest Rates in the P2P Consumer Lending Market? Empirical Evidence from Switzerland. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.2767455
Hidajat, T. (2020). Unethical practices peer-to-peer lending in Indonesia. Journal of Financial Crime, 27(1), 274–282. https://doi.org/10.1108/JFC-02-2019-0028
Indofund. (2023). Sejarah P2P Lending dan Perkembangannya di Indonesia. https://www.indofund.id/blog-detail/63994b66d5b2845a155842e0
Jin, J., Shang, Q., & Ma, Q. (2019). The role of appearance attractiveness and loan amount in peer-to-peer lending: Evidence from event-related potentials. Neuroscience Letters, 692, 10–15. https://doi.org/10.1016/j.neulet.2018.10.052
Jin, Y., & Zhu, Y. (2015). A data-driven approach to predict default risk of loan for online peer-to-peer (P2P) lending. Proceedings - 2015 5th International Conference on Communication Systems and Network Technologies, CSNT 2015, 609–613. https://doi.org/10.1109/CSNT.2015.25
Lin, X., Li, X., & Zheng, Z. (2017). Evaluating borrower’s default risk in peer-to-peer lending: evidence from a lending platform in China. Applied Economics, 49(35), 3538–3545. https://doi.org/10.1080/00036846.2016.1262526
Liu, W., & Xia, L. Q. (2017). An Evolutionary Behavior Forecasting Model for Online Lenders and Borrowers in Peer-to-Peer Lending. Asia-Pacific Journal of Operational Research, 34(1), 1–14. https://doi.org/10.1142/S0217595917400085
Ma, H. Z., & Wang, X. R. (2016). Influencing factor analysis of credit risk in P2P lending based on interpretative structural modeling. Journal of Discrete Mathematical Sciences and Cryptography, 19(3), 777–786. https://doi.org/10.1080/09720529.2016.1178935
Magistravia, E. G. R. (2024). Peningkatan Partisipasi Perempuan Pekerja Formal dan Informal 2024. https://data.goodstats.id/statistic/peningkatan-partisipasi-perempuan-pekerja-formal-dan-informal-2024-tcIBy
Maheswara, R. (2025). Kontribusi Pulau Jawa pada Perekonomian Indonesia 2024. https://dataloka.id/ekonomi/2624/kontribusi-pulau-jawa-pada-perekonomian-indonesia-2024/
Muhammad, R., Fakhrunnas, F., & Hanun, A. K. (2021). The Determinants of Potential Failure of Islamic Peer-to-Peer Lending: Perceptions of Stakeholders in Indonesia. Journal of Asian Finance, Economics and Business, 8(2), 981–992. https://doi.org/10.13106/jafeb.2021.vol8.no2.0981
Mukhtar, D. F., & Rahayu, Y. (2019). Analisis Pendanaan Modal Umkm Melalui Financial Technology Peer To Peer Lending (P2P). Jurnal ILmu Dan Riset Akuntansi, 8(5), 7.
Nurhayati, S., Rahmawati, A., & Surwanti, A. (2022). Bibliometric Analysis of Peer to Peer Lending Fintech Trends. Journal of Economics and Business, 5(4). https://doi.org/10.31014/aior.1992.05.04.454
Purwanto, H., Yandri, D., & Yoga, M. P. (2022). Perkembangan Dan Dampak Financial Technology (Fintech) Terhadap Perilaku Manajemen Keuangan Di Masyarakat. Kompleksitas: Jurnal Ilmiah Manajemen, Organisasi Dan Bisnis, 11(1), 80–91. https://doi.org/10.56486/kompleksitas.vol11no1.220
Santoso, W., Trinugroho, I., & Risfandy, T. (2020). What Determine Loan Rate and Default Status in Financial Technology Online Direct Lending? Evidence from Indonesia. Emerging Markets Finance and Trade, 56(2), 351–369. https://doi.org/10.1080/1540496X.2019.1605595
Serrano-Cinca, C., Gutiérrez-Nieto, B., & López-Palacios, L. (2015). Determinants of default in P2P lending. PLoS ONE, 10(10), 1–22. https://doi.org/10.1371/journal.pone.0139427
Sifrain, R. (2023). Predictive Analysis of Default Risk in Peer-to-Peer Lending Platforms: Empirical Evidence from LendingClub. Journal of Financial Risk Management, 12(01), 28–49. https://doi.org/10.4236/jfrm.2023.121003
Suryono, R. R., Purwandari, B., & Budi, I. (2019). Peer to peer (P2P) lending problems and potential solutions: A systematic literature review. Procedia Computer Science, 161, 204–214. https://doi.org/10.1016/j.procs.2019.11.116
Tempo. (2024). Risiko Kredit Macet Pinjol Lebaran. https://www.tempo.co/ekonomi/kredit-macet-pinjol-lebaran-409262
Vinod Kumar, L., Natarajan, S., Keerthana, S., Chinmayi, K. M., & Lakshmi, N. (2016). Credit Risk Analysis in Peer-to-Peer Lending System. 2016 IEEE International Conference on Knowledge Engineering and Applications, ICKEA 2016, July, 193–196. https://doi.org/10.1109/ICKEA.2016.7803017
Yusgiantoro, I. (2018). What determine loan rate and default status in financial technology online direct lending? Evidence from Indonesia. December.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Journal of Accounting Inquiry

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Journal of Accounting Inquiry is licensed under a
Creative Commons Attribution-ShareAlike 4.0 International License










