UNLOCKING THE POWER OF BIG DATA: DIGITAL TRANSFORMATION OF PUBLIC POLICY IN DPRD DKI JAKARTA
DOI:
https://doi.org/10.14421/pjk.v16i2.2631Keywords:
big data, policy formulation, public policy, government communicationAbstract
This research delves into the prospects and obstacles associated with utilizing large-scale data in developing public policies within the Indonesian context. Integrating big data technology holds promise as a tool for government agencies aiming to refine the public policy formulation process, ultimately providing enhanced services to the populace. Despite its inherent complexity and costliness, incorporating big data offers the government a means to furnish the most up-to-date, precise, and granular information pertinent to developmental issues. For instance, in the agricultural sector, big data can offer an intricate understanding of the diverse requirements of farmers in distinct regions, such as the differentiation between rice varieties sought by farmers in Kalimantan compared to those in Java. Furthermore, the expansive reservoirs of geophysical and meteorological big data hold the capacity to significantly bolster the government's initiatives concerning natural disaster mitigation policies. Nonetheless, the practical integration of big data still needs to be improved by a dearth of comprehensive regulations governing its application. Additionally, the perils of recurrent data breaches in the Indonesian context pose a formidable challenge. This comprehensive analysis concludes that using big data in policy formulation within Indonesia encounters substantial hurdles that threaten to overshadow the potential advantages this technology could offer in enhancing public policy crafting.Downloads
References
Ali, H., & Titah, R. (2021). Do cities use big data? Understanding the nature and antecedents of big data use by municipalities. Government Information Quarterly, 38(4), 101600. https://doi.org/10.1016/j.giq.2021.101600
Arbex, R., & Cunha, C. B. (2020). Estimating the influence of crowding and travel time variability on accessibility to jobs in a large public transport network using smart card big data. Journal of Transport Geography, 85, 102671. https://doi.org/10.1016/j.jtrangeo.2020.102671
Atriana, R., & Hidayat, F. (2017, July 20). Ini Penyimpangan Proyek e-KTP yang Bikin Rugi Negara Rp 2,3 Triliun. Detik.Com, 1–5. https://news.detik.com/berita/d-3567749/ini-penyimpangan-proyek-e-ktp-yang-bikin-rugi-negara-rp-23-triliun
Broeders, D., Schrijvers, E., van der Sloot, B., van Brakel, R., de Hoog, J., & Hirsch Ballin, E. (2017). Big Data and security policies: Towards a framework for regulating the phases of analytics and use of Big Data. Computer Law & Security Review, 33(3), 309–323. https://doi.org/10.1016/j.clsr.2017.03.002
Bungin, B. (2017). Metodologi Penelitian Kualitatif (B. Bungin (ed.); 2nd ed.). PT Rajagrafindo Persada. https://www.rajagrafindo.co.id/produk/metodologi-penelitian-kualitatif-burhan-bungin/
Chen, F., Hou, J., Gu, X., Hou, J., Pan, Q., & Tang, Z. (2022). Research on the temporal and spatial evolution of the public’s response to the mandatory waste separation policy based on big data mining. Sustainable Production and Consumption, 31, 236–248. https://doi.org/10.1016/j.spc.2022.02.013
Cremin, C. J., Dash, S., & Huang, X. (2022). Big data: Historic advances and emerging trends in biomedical research. Current Research in Biotechnology, 4, 138–151. https://doi.org/10.1016/j.crbiot.2022.02.004
Creswell, J. W. (2017). Research Design Pendekatan Kualitatif, Kuantitatif, dan Mixed (S. Z. Qudsy (ed.); 3rd ed.). Pustaka Pelajar. https://opac.perpusnas.go.id/DetailOpac.aspx?id=1213690
Desarkar, A., & Das, A. (2017). Big-Data Analytics, Machine Learning Algorithms and Scalable/Parallel/Distributed Algorithms. In Internet of Things and Big Data Technologies for Next Generation Healthcare (1st ed., pp. 159–197). Springer Publishing Company. https://doi.org/10.1007/978-3-319-49736-5_8
Firdau, M. I. (2018). Pengaruh Pemanfaatan Teknologi Informasi, Kepatuhan Atas Peraturan, dan Kompetensi SDM Terhadap Kualitas LKKL. Indonesian Treasury Review Jurnal Perbendaharaan Keuangan Negara Dan Kebijakan Publik, 3(2), 129–142. https://doi.org/10.33105/itrev.v3i2.69
Gregory, A., & Halff, G. (2020). Big data-driven public relations did the damage. Public Relations Review, 46(2), 101902. https://doi.org/10.1016/j.pubrev.2020.101902
Guenduez, A. A., Mettler, T., & Schedler, K. (2020). Technological frames in public administration: What do public managers think of big data? Government Information Quarterly, 37(1), 101406. https://doi.org/10.1016/j.giq.2019.101406
Hadi, M. Z. (2020). Peluang Implementasi Teknologi Big Data Dan Block Chain Untuk Peningkatan Kinerja Perdagangan Pada Sektor UMKM di Indonesia Pada Era Industri 4.0. Cendekia Niaga, 3(1), 71–80. https://doi.org/10.52391/jcn.v3i1.463
Hakim, D. N., Ramadan, F., & Cahyono, Y. I. (2021). Studi Pemanfaatan Big Data dalam Perumusan Kebijakan Publik pada Sektor Kesehatan. SPECTA Journal of Technology, 5(3), 308–322. https://doi.org/10.35718/specta.v5i3.379
Hergiansa, G. A.-F., Widuri, S. S., & Hadiapurwa, A. (2020). Pemanfaatan Big Data dalam Lingkup Pendidikan. Inovasi Kurikulum, 17(2), 109–116. https://doi.org/10.17509/jik.v17i2.42928
Heryana, D., Setiawati, L., & Suhendar, B. (2020). Sistem Informasi dan Potensi Manfaat Big Data untuk Pendidikan. Gunahumas, 2(2), 350–357. https://doi.org/10.17509/ghm.v2i2.23023
Kandt, J., & Batty, M. (2021). Smart cities, big data, and urban policy: Towards urban analytics for the long run. Cities, 109, 102992. https://doi.org/10.1016/j.cities.2020.102992
Khurshid, M. M., Zakaria, N. H., Rashid, A., Kazmi, R., Shafique, M. N., & Nazir Ahmad, M. (2019). Analyzing diffusion patterns of big open data as policy innovation in the public sector. Computers & Electrical Engineering, 78, 148–161. https://doi.org/10.1016/j.compeleceng.2019.07.010
Kinra, A., Beheshti-Kashi, S., Buch, R., Nielsen, T. A. S., & Pereira, F. (2020). Examining the potential of textual big data analytics for public policy decision-making: A case study with driverless cars in Denmark. Transport Policy, 98, 68–78. https://doi.org/10.1016/j.tranpol.2020.05.026
Kitchin, R., & McArdle, G. (2016). What makes Big Data Big Data? Exploring the ontological characteristics of 26 datasets. Big Data & Society, 3(1), 205395171663113. https://doi.org/10.1177/2053951716631130
Lam, J. C. K., Cheung, L. Y. L., Wang, S., & Li, V. O. K. (2019). Stakeholder concerns of air pollution in Hong Kong and policy implications: A big-data computational text analysis approach. Environmental Science & Policy, 101, 374–382. https://doi.org/10.1016/j.envsci.2019.07.007
Lyu, J., Khan, A., Bibi, S., Chan, J. H., & Qi, X. (2022). Big data in action: An overview of big data studies in tourism and hospitality literature. Journal of Hospitality and Tourism Management, 51, 346–360. https://doi.org/10.1016/j.jhtm.2022.03.014
Maryam, N. S. (2016). Mewujudkan Good Governance Melalui Pelayanan Publik. Jurnal Ilmu Politik Dan Komunikasi, VI(1), 1–18. https://doi.org/https://doi.org/10.34010/jipsi.v6i1.232
Moleong, J. L. (2018). Qualitative Research Methodology (8th ed.). Remaja Rosdakarya. https://opac.perpusnas.go.id/DetailOpac.aspx?id=1133305
Mostafa, N., Ramadan, H. S. M., & Elfarouk, O. (2022). Renewable energy management in smart grids uses big data analytics and machine learning. Machine Learning with Applications, 100363. https://doi.org/10.1016/j.mlwa.2022.100363
Mubaroq, S., & Insyiroh, I. M. (2020). Teknologi Kecerdasan Buatan, Big Data Analysis, dan Internet of Things: Potensi dan Perannya dalam Penanganan Covid-19 di Indonesia. Jurnal Kependudukan Indonesia, 109. https://doi.org/10.14203/jki.v0i0.580
Nainggolan, D. R. M. (2017). Data Science, Big Data, and Predictive Analytics: A Platform for Cyberspace Security Intelligence. Jurnal Pertahanan & Bela Negara, 7(2). https://doi.org/10.33172/jpbh.v7i2.192
Nur, S. K. (2020). Pemanfaatan Big Data Pada Konsep Smart City: Kajian Pustaka. Jurnal INSTEK (Informatika Sains Dan Teknologi), 5(1), 27. https://doi.org/10.24252/instek.v5i1.12140
Pambudi, A. S. (2021). Optimalisasi Pemanfaatan Big Data dalam Evaluasi On Going DAK Fisik Bidang Kesehatan saat Pandemi COVID-19. Bappenas Working Papers, 4(2), 201–217. https://doi.org/10.47266/bwp.v4i2.96
Patgiri, R., & Ahmed, A. (2016). Big Data: The V’s of the Game Changer Paradigm. 2016 IEEE 18th International Conference on High Performance Computing and Communications; IEEE 14th International Conference on Smart City; IEEE 2nd International Conference on Data Science and Systems (HPCC/SmartCity/DSS), 17–24. https://doi.org/10.1109/HPCC-SmartCity-DSS.2016.0014
Permana, D., Muchsin, S., & Suyeno. (2021). Inovasi Program Pelayanan Publik Berbasis Digital Government (Studi Kasus pada Pengadilan Agama di Kota Malang). Jurnal Respon Publik, 15(1), 32–40. http://riset.unisma.ac.id/index.php/rpp/article/view/10013
Proskuryakova, L. (2022). The interaction of environmental systems and human development in a time of wild cards. A big data-enhanced foresight study. Journal of Environmental Management, 316, 115169. https://doi.org/10.1016/j.jenvman.2022.115169
Putry, R. A. (2022). Dekonstruksi Kebijakan Publik Masa Kini Melalui Eskalasi Kualitas Satu Data Indonesia: Antara Harapan dan Kenyataan. Collaborative Governance and Digital Transformation to The Smart Cities, 23–34. http://repository.unigal.ac.id:8080/handle/123456789/1200
Sirait, E. R. E. (2016). Implementasi Teknologi Big Data di Lembaga Pemerintahan Indonesia. Jurnal Penelitian Pos Dan Informatika, 6(2), 113. https://doi.org/10.17933/jppi.2016.060201
Syafrina, A. E., & Irwansyah. (2018). Privacy Threats in Big Data. Jurnal Penelitian Komunikasi Dan Opini Publik, 22(2). https://doi.org/10.33299/jpkop.22.2.1503
van der Voort, H. G., Klievink, A. J., Arnaboldi, M., & Meijer, A. J. (2019). Rationality and politics of algorithms. Will the promise of big data survive the dynamics of public decision-making? Government Information Quarterly, 36(1), 27–38. https://doi.org/10.1016/j.giq.2018.10.011
Vydra, S., & Klievink, B. (2019). Techno-optimism and policy-pessimism in the public sector big data debate. Government Information Quarterly, 36(4), 101383. https://doi.org/10.1016/j.giq.2019.05.010
Wanckel, C. (2022). An ounce of prevention is worth a pound of cure – Building capacities for the use of big data algorithm systems (BDAS) in early crisis detection. Government Information Quarterly, 101705. https://doi.org/10.1016/j.giq.2022.101705
Xing, Y., Wang, X., Qiu, C., Li, Y., & He, W. (2022). Research on opinion polarization by big data analytics capabilities in online social networks. Technology in Society, 68, 101902. https://doi.org/10.1016/j.techsoc.2022.101902
Zhao, E., Sun, S., & Wang, S. (2022). New developments in wind energy forecasting with artificial intelligence and big data: A scientometric insight. Data Science and Management. https://doi.org/10.1016/j.dsm.2022.05.002
Downloads
Published
Issue
Section
License
Please find the rights and licenses in Profetik: Jurnal Komunikasi by submitting the article/manuscript of the article, the author(s) agree with this policy. No specific document sign-off is required.
1. License
The non-commercial use of the article will be governed by the Creative Commons Attribution license as currently displayed on Creative Commons Attribution-NonCommercial 4.0 International License
2. Author(s)' Warranties
The author warrants that the article is original, written by stated author(s), has not been published before, contains no unlawful statements, does not infringe the rights of others, is subject to copyright that is vested exclusively in the author and free of any third party rights, and that any necessary written permissions to quote from other sources have been obtained by the author(s).
3. User/Public Rights
Profetik's spirit is to disseminate articles published are as free as possible. Under the Creative Commons license, Profetik permits users to copy, distribute, display, and perform the work for non-commercial purposes only. Users will also need to attribute authors and Profetik on distributing works in the journal and other media of publications. Unless otherwise stated, the authors are public entities as soon as their articles got published.
4. Rights of Authors
Authors retain all their rights to the published works, such as (but not limited to) the following rights;
Copyright and other proprietary rights relating to the article, such as patent rights, The right to use the substance of the article in own future works, including lectures and books, The right to reproduce the article for own purposes, The right to self-archive the article (please read out deposit policy), The right to enter into separate, additional contractual arrangements for the non-exclusive distribution of the article's published version (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal (Profetik: Jurnal Komunikasi).
5. Co-Authorship
If the article was jointly prepared by more than one author, any authors submitting the manuscript warrants that he/she has been authorized by all co-authors to be agreed on this copyright and license notice (agreement) on their behalf, and agrees to inform his/her co-authors of the terms of this policy. Profetik will not be held liable for anything that may arise due to the author(s) internal dispute. Profetik will only communicate with the corresponding author.
6. Royalties
Being an open accessed journal and disseminating articles for free under the Creative Commons license term mentioned, author(s) aware that Profetik entitles the author(s) to no royalties or other fees.
7. Miscellaneous
Profetik will publish the article (or have it published) in the journal if the article’s editorial process is successfully completed. Profetik's editors may modify the article to a style of punctuation, spelling, capitalization, referencing and usage that deems appropriate. The author acknowledges that the article may be published so that it will be publicly accessible and such access will be free of charge for the readers as mentioned in point 3.