Visualisasi Distribusi Densitas Plasma di dalam Tokamak Melalui Persamaan Magnetohidrodinamika Menggunakan Kode BOUT++
Keywords:
BOUT Code, Magnetohydrodynamics, Tokamak, Plasma DensityAbstract
Penelitian ini bertujuan untuk memvisualisasaikan distribusi densitas plasma di dalam tokamak. Pengambilan data variasi densitas plasma 4 dimensi dilakukan menggunakan kode BOUT++ melalui persamaan magnetohidrodinamika (MHD) dengan variasi waktu , dan . Data variasi densitas plasma 4 dimensi dikonversi menjadi data variasi densitas plasma 2 dimensi dan ditampilkan dalam bentuk grafik 2 dimensi dan 3 dimensi menggunakan Matlab. Hasil visualisasi grafik menunjukkan bahwa variasi densitas plasma berubah dari waktu ke waktu dan selalu mengarah pada kondisi stabil pada t = 50 micros
References
L. Parinduri dan T. Parinduri, “Konversi Biomassa Sebagai Sumber Energi Terbarukan,” JET (Journal Electr. Technol., vol. 5, no. 2, hal. 88–92, 2020.
E. Liun dan Sunardi, “Perbandingan Harga Energi Dari Sumber Energi Baru Terbarukan Dan Fosil,” J.Pengemb. Energi Nukl., vol. 16, no. March, hal. 119–130, 2014.
N. Kusuma, “Hubungan Antara Metode dan Lama Pemakaian dengan Keluhan Kesehatan Subyektif pada Akseptor,” J. Berk. Epidemiol., vol. 4, no. 2, hal. 164–175, 2016.
I. Prasetiyani dan D. Widiyanto, “Strategi Menghadapi Ketahanan Pangan (Dilihat Dari Kebutuhan Dan Ketersediaan Pangan) Penduduk Indonesia di Masa Mendatang (Tahun 2015-2040),” UGM J., vol. 10, no. 2, hal. 227–235, 2015.
Y. Afriyanti, H. Sasana, dan G. Jalunggono, “Analisis Faktor-Faktor yang Mempengaruhi Konsumsi Energi Terbarukan di Indonesia,” Dir. J. Econ., vol. 2, no. 3, hal. 865–884, 2018.
I. Kholiq, “Pemanfaatan Energi Alternatif sebagai Energi Terbarukan untuk mendukung Subtitusi BBM,” J. IPTEK, vol. 19, no. 2, hal. 75–91, 2015.
Sunardi, D. H. Salimy, E. Liun, dan S. M. Lumbanraja, “Energi Nuklir sebagai Sumber Energi Panas Alternatif pada Kilang Minyak,” J. Pengemb. Energi Nukl., vol. 14, no. March, hal. 85–94, 2012.
J. M. Pearce, “Limitations of nuclear power as a sustainable energy source,” Sustainability, vol. 4, no. 6, hal. 1173–1187, 2012.
F. I. T. Petrescu et al., “Environmental Protection through Nuclear Energy,” vol. 13, no. 9, hal. 941–946, 2016.
T. Hamacher, M. Huber, J. Dorfner, K. Schaber, dan A. M. Bradshaw, “Nuclear fusion and renewable energy forms: Are they compatible?,” Fusion Eng. Des., vol. 88, no. 6, hal. 657–660, 2013.
K. Miyamoto, Plasma physics for nuclear fusion. 1980.
J. E. T. Team, “Fusion energy production from a deuterium-tritium plasma in the JET tokamak,” Nucl. Fusion, vol. 32, no. 2, hal. 187–203, 1992.
R. J. Hawryluk, “Results from deuterium-tritium tokamak confinement experiments,” Rev. Mod. Phys., vol. 70, no. 2, hal. 537–587, Apr 1998.
J. D. Strachan et al., “Fusion power production from TFTR plasmas fueled with deuterium and tritium,” Phys. Rev. Lett., vol. 72, no. 22, hal. 3526–3529, 1994.
R. Uemura, Y. Matsui, K. Yoshimura, H. Motoyama, dan N. Yoshida, “Evidence of deuterium excess in water vapor as an indicator of ocean surface conditions,” J. Geophys. Res. Atmos., vol. 113, no. 19, hal. 1–10, 2008.
R. Uemura, N. Yoshida, N. Kurita, M. Nakawo, dan O. Watanabe, “An observation-based method for reconstructing ocean surface changes using a 340,000-year deuterium excess from the Dome Fuji ice core, Antarctica,” Geophys. Res. Lett., vol. 31, no. 13, hal. 2–5, 2004.
R. Dierckx, “Direct tritium production measurement in irradiated lithium,” Nucl. Instruments Methods, vol. 107, no. 2, hal. 397–398, 1973.
T. Hoshino et al., “Development of advanced tritium breeding material with added lithium for ITER-TBM,” J. Nucl. Mater., vol. 417, no. 1, hal. 684–687, 2011.
R. L. Macklin dan H. E. Banta, “Tritium Production from Lithium by Deuteron Bombardment,” Phys. Rev., vol. 97, no. 3, hal. 753–757, Feb 1955.
R. J. BICKERTON, J. W. CONNOR, dan J. B. TAYLOR, “Diffusion Driven Plasma Currents and Bootstrap Tokamak,” Nat. Phys. Sci., vol. 229, no. 4, hal. 110–112, 1971.
V. S. Mukhovatov dan V. D. Shafranov, “Plasma equilibrium in a Tokamak,” Nucl. Fusion, vol. 11, no. 6, hal. 605–633, 1971.
G. Taylor, J. D. Strachan, R. V Budny, dan D. R. Ernst, “Fusion Heating in a Deuterium-Tritium Tokamak Plasma,” Phys. Rev. Lett., vol. 76, no. 15, hal. 2722–2725, Apr 1996.
E. F. Jaeger et al., “Simulation of high-power electromagnetic wave heating in the ITER burning plasma,” Phys. Plasmas, vol. 15, no. 7, hal. 72513, Jul 2008.
A. Pospieszczyk, G. Chevalier, Y. Hirooka, R. W. Conn, R. Doerner, dan L. Schmitz, “Helium line emission measurements in PISCES-B as a tool for Te-profile determinations in tokamak boundary plasmas,” Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms, vol. 72, no. 2, hal. 207–223, 1992.
O. A. Bég, L. Sim, J. Zueco, dan R. Bhargava, “Numerical study of magnetohydrodynamic viscous plasma flow in rotating porous media with Hall currents and inclined magnetic field influence,” Commun. Nonlinear Sci. Numer. Simul., vol. 15, no. 2, hal. 345–359, 2010.
A. J. Webster, “Magnetohydrodynamic tokamak plasma edge stability,” Nucl. Fusion, vol. 52, no. 11, hal. 114023, 2012.
D. Arsénio, S. Ibrahim, dan N. Masmoudi, “A Derivation of the Magnetohydrodynamic System from Navier–Stokes–Maxwell Systems,” Arch. Ration. Mech. Anal., vol. 216, no. 3, hal. 767–812, 2015.
R. J. Thompson dan T. M. Moeller, “A Maxwell formulation for the equations of a plasma,” Phys. Plasmas, vol. 19, no. 1, hal. 10702, Jan 2012.
B. D. Dudson, M. V Umansky, X. Q. Xu, P. B. Snyder, dan H. R. Wilson, “BOUT++: A framework for parallel plasma fluid simulations,” Comput. Phys. Commun., vol. 180, no. 9, hal. 1467–1480, 2009.
B. D. Dudson et al., “BOUT++: Recent and current developments,” J. Plasma Phys., vol. 81, no. 1, hal. 365810104, 2015.
X. Q. Xu et al., “Simulations of tokamak boundary plasma turbulence transport in setting the divertor heat flux width,” Nucl. Fusion, vol. 59, no. 12, hal. 126039, 2019.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Cecilia Yanuarief, Koddam Rukadi Lubis
![Creative Commons License](http://i.creativecommons.org/l/by-sa/4.0/88x31.png)
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.