Surface Plasmon Resonance (Spr) Sensor Simulation with Kretschmann Configuration Based on Chitosan-Graphene Oxide Nanocomposite for Lead Metal Ion Detection

Authors

  • Desy Novitasari UIN Sunan Kalijaga
  • Widayanti UIN Sunan Kalijaga

Keywords:

Surface Plasmon Resonance (SPR), Winspall, Chitosan-graphene oxide nanocomposite, Lead Metal Ion

Abstract

The presence of metal ions in river water can have a negative impact on humans when consumed. The detection of metal ions is crucial, and one of the methods is  the surface plasmon resonance (SPR) phenomenon using SPR sensor system. SPR biosensor system can be used for metal ion deteection, offering advantages such of affordability and rapid detection. This research aims to investigate the influence of adding chitosan-graphene oxide (CS-GO) nanocomposites to SPR sensors as lead ion detectors. The CS-GO nanocomposites is used as a detector with variations in volume fraction and thickness to find the optimum values. The varied volume fractions are 18 nm, 20 nm and 25 nm. The involvement of the CS_GO nanocomposites is demonstrated through the reflectance curve, showing the SPR angle and reflectance values. The Winspall simulator is used to display the reflectance curve. The SPR system utulized a He-Ne laser with a wavelength of 632,8 nm, a BK7 half cylinder prism, and a thin film of silver metal layer. The SPR sensor configuration used is the Kretschmann configuration. The layer system models include BK7 prism/Ag thin film/chitosan/lead ion, and BK7/Ag thin film/CS-GO/lead ion. The nanocomposite CS-GO’s pernittivity is calculated using the Maxwell Garnett effective medium theory. Result show that the refractive index and permittivity values of the CS-GO nanocomposite increase with the increasing volume fraction. The nanocomposite with a volume fraction of  0,099 produce a permittivity of 2,4337 and a refractive index of 1,5600.Larger permittivity values and thicknesses of the nanocomposite also lead to a shift in the SPR angle in the reflectance curve. The most significant SPR angle shift is observed with the use of CS-GO nanocomposite with a volume fraction of 0,099 and a thickness of 25 nm

References

Lokman, N.F., Bakar A A A, Suja F, Yaacob M H, 2014. Highly Sensitive SPR Response of Au/Chitosan/Graphene Oxide Nanostructured Thin films Toward Pb (II) Ions. Sensors and Actuators B: Chemical, Vol. 195 Januari 2014 : 459-466.

Briffa J, Sinagra E, Blundell R, 2020. Heavy Metal Pollution in The Environmental and Their Toxicological Effect on Humans . Heliyon.vol 6 issue 9: e04691

Susanti, R A., Mustikaningtyas D, Sasi F A. 2014. Analisis Kadar Logam Berat Pada Sungai di Jawa Tengah. Sainteknol, Vol. 12 No.1 Juli 2014 : 35-40.

Mitra S, Chakraborty A J, Tareq A M, Emran T B, Nainu F, Khusro A, Idris A M, Khandaker M U, Osman H, Alhumaydi F A, Gandara J S, 2022. Impact of Heavy Metal on The Environment and HUman Health: Novel Therapeutic Insight to Counter The Toxicity. Journal of King Saud University-Science, vol 34 issue 3, 101865

Alengebawy A, Abdelkhalek S T, Qureshi S R, Wan M Q. 2021. Heavy Metals and Pesticides Toxicity in Agricultural Soil and Plants: Ecological Risks and Human Implication. Toxics. Vol 9 Issue 3 9030042

Pratiwi, D. Y. 2020. Dampak Pencemaran Logam Berat (Timbal, Tembaga, Merkuri, Kadmium, Krom) Terhadap Organisme Perairan dan Kesehatan Manusia. Jurnal Akuatek, Vol. 1 No. 1 Juni 2020 : 59-65.

Ali H, Khan E, Ilahi I. 2019. Environmental Chemistry and Ectoxicology of Hazardous Heavy Metal: Envirinmental Persistence, Toxicity and Bioaccumulation. Journal of Chemistry. Vol 2019 6730305

Sekarwati N, Murachman B, Sunarto. 2015. Dampak Logam Berat Cu (Tembaga) dan Ag (Perak) Pada Limbah Cair Industri Perak Terhadap Kualitas Air Sumur dan Kesehatan Masyarakat serta Upaya Pengendaliannya di Kota Gede Yogyakarta. Jurnal Ekosains, Vol. 7 No.1 Maret 2015 : 64-76.

Latif Wani AB, Ara A, Usmani J A, 2015. Lead Toxicity: a review. Interdiscip Toxicol, Vol 8 No 2 : 55-64

Alwahib, A. B. A, Kamil Y M, Abu bakar M H, Noor A S M, Yacoob M H, Lim H N, Huang N M, Mahdi M A. 2018. Reduced Graphene Oxide/Maghemite Nanocomposite for Detection of Lead Ions in Water Using Surface Plasmon Resonance. IEEE Photonics Journal, Vol. 10 No. 6 December 2018.

Uddin I. 2021. Onsite Visual Detection of Heavy Metal Contaminants Using Impregnated Strip. Journal of Photochemistry and Photobiology A: Chemistry. Vol 421 1 Desember 2021, 113512

Daniyal, W. M. E. M. M., Saliviter S, Fen Y W. 2018. Development of Surface Plasmon Resonance Spectroscopy for Metal Ion Detection. Sensors and Materials, Vol. 30 No. 9 : 2023–2038.

Villarim M R, Belford D R, Souza C P. 2023 A surface Plasmon Resonance (SPR) based Biosensor Simulation Platform for Performance Evaluation of Different Constructional Configurations. Coating. Vol 13 issue 3 10.3390

Homola, J., (2006). Surface Plasmon Resonance Based Sensor. Berlin: Springer Verlag Heidelberg

Green, R. J, Frazier R A, Shakesheff K M, Davies M C, Roberts C J, Tendler S J. 2000. Surface Plasmon Resonance Analysis of Dynamic Biological Interactions with Biomaterials. Biomaterials, 2000 : 1823-1835.

Arifani, T. dan Abraha, K. 2016. Kajian Pengaruh Penambahan Nanopartikel Perak (AgNPs) Terhadap Respon Instrumen Sensing Berbasis Surface Plasmon Resonance (SPR). Indonesian Journal of Applied Physics, Vol.3 No.1 : 47-54.

Anam, M. K., dkk. 2013. Deteksi Formalin Menggunakan Surface Plasmon Resonance (SPR) Berbasis Nanopartikel Perak sebagai Pengembangan Awal Teknologi Food Safety. Indonesian Journal of Applied Physics, Vol.3 No.2 : 201-208

Mohammadzadeh-Asl, S., Keshtkar A, Dolatabadi J E N, Guardia M. 2018. Nanomaterials and Phase Sensitive based Signal Enhancment in Surface Plasmon Resonance. Biosensors and Bioelectronic, Maret 2018 : 1-56.

Kretschmann, E; Raether, H, Notizen, 1968, Radiation Decay of Non Radiative Surface Plasmon Exited by Light, Naturforsh 23 A, 2135-2136

Matsubara, K., Kawata, S., dan Minami, S. (1998). Optical Chemical Sensor Based on Surface Plasmon Measurement. Appl. Opt. 27, 160-1163.

Lokman, N.F., Azeman N H, Suja F, Arsad N, A bakar AA. 2019. Sensitivity Enhancement of Pb(II) Ion Detection in Rivers Using SPR-Based Ag Metallic Layer Coated with Chitosan–Graphene Oxide Nanocomposite. Sensors, Vol. 19 November 2019 : 1-17.

Lokman, N.F., dkk. 2019. Sensitivity Enhancement of Pb(II) Ion Detection in Rivers Using SPR-Based Ag Metallic Layer Coated with Chitosan–Graphene Oxide Nanocomposite. Sensors, Vol. 19 November 2019 : 1-17.

Johnson, P.B.; Chrysty. 1972. Optical Constans of The Noble Metals. Physc. Rev. B vol 6, 4370-4379

Mironenko, Alexander, Modin, Evgeny, Sergeev, Alexander, Vosnesenskiy, sergey, 2014. Fabrication and Optical Properties of Chitosan/Ag nanoparticles Thin Film Composites. Chemical Engineering Journal vol 244

Veronika S, Jan P, Alexander K, Petr A, Ladislav F, Tomas C, peter K, Oldrich Z, Martin W, 2017. Physical Properties Investigation of Reduced Graphene Oxide Thin Film Prepared by material Inkjet Printing, Journals of Nanomaterials vol 2017

Fen, Y. W., dkk. 2011. Detection of Mercury and Copper Ions Using Surface Plasmon Resonance Optical Sensor. Sensors and Materials, Vol. 23 No. 6 2011 : 325–334.

Xue, Q. Effective-medium theory for two-phase random composites with an interfacial shell. J. Mater. Sci. Technol. 2000, 16, 367–369.

Ji L, Chen Y, Yuan Y J. 2014. Investigation on Surface Plasmon Resonance Phenomena by Finite Element Analysis and Fresnel Calculation. Sensors and Actuators B: Chemical vol 198 31 July 2014: 82-86

Rajabiah N. 2016. Surface Plasmon Resonance (SPR) Phenomenon of The Oxidizing and Reducing Polypyrrole. Turbo Vol 5 No 2 : 149-154

Widayanti. 2018. Kajian Teoritis dan Komputasi Pengaruh Nanopartikel Core-Shell Terhadap Kinerja Biosensor Berbasis Fenomena Surface Plasmon Resonance. (Tugas Akhir), Program Studi S3 Ilmu Fisika, FMIPA, UGM, Yogyakarta.

Downloads

Published

2023-08-20

How to Cite

Novitasari, D., & Widayanti. (2023). Surface Plasmon Resonance (Spr) Sensor Simulation with Kretschmann Configuration Based on Chitosan-Graphene Oxide Nanocomposite for Lead Metal Ion Detection. Sunan Kalijaga Journal of Physics, 4(1), 8–15. Retrieved from https://ejournal.uin-suka.ac.id/saintek/physics/article/view/3585