Sensors and Transducers for Lava Flood Detection: Systematic Literature Review

Authors

  • Iswanto Iswanto Universitas Muhammadiyah Yogyakarta
  • John Minto University of the West of Scotland, Paisley, United Kingdom
  • Esraa Abdellatif Hammouda Clinical Research Department, El-Raml Pediatric Hospital, MoHP, Alexandria, Egypt
  • Mohamed Yusuf Hassan Faculty of Medicine and Surgery, Benadir University, Mogadishu, Somalia
  • Abdikani Yusuf Abdulle Economics Management, School of Social Science, University Sains Malaysia, Penang, 11800, Malaysia

Keywords:

Sensors, Transducer, Detection, Lava flood

Abstract

Disasters always come suddenly, becoming a natural phenomenon that humans face. One of the natural disasters is a lava flood, which is a collection of lava released by a volcano and reaches the lower surface with the help or encouragement of rainwater. The impact of lava floods has a high risk because the material it carries can cause damage and has the potential to cause death, injury, illness, life at risk, loss of security, displacement, damage or loss of property, and disruption of community activities, so an early warning system is needed. can provide accurate data about the time of the disaster. To overcome digital sophistication, tools have been created in the form of sensors and transducers for lava flood detection. The aim of this research is to examine sensors and transducers for lahar flood detection. This research uses a systematic literature review using Preferred Reporting Items for Systematic Reviews (PRISMA). The results of article screening and selection found 77 potential articles that met the inclusion criteria. The results of the research show that the development of sensors and transducers has begun to create a lot of lahar flood detection tools through artificial intelligence based on the internet of thought which uses sensors and transducers inside and optimization of sensors and transducers for lahar flood detection must be done by setting the point of detection tools for use in various flood-prone locations. lava, so that detection of lava floods can be known before a disaster occurs.

Author Biographies

John Minto, University of the West of Scotland, Paisley, United Kingdom

University of the West of Scotland, Paisley, United Kingdom

Esraa Abdellatif Hammouda, Clinical Research Department, El-Raml Pediatric Hospital, MoHP, Alexandria, Egypt

Clinical Research Department, El-Raml Pediatric Hospital, MoHP, Alexandria, Egypt

Mohamed Yusuf Hassan, Faculty of Medicine and Surgery, Benadir University, Mogadishu, Somalia

Faculty of Medicine and Surgery, Benadir University, Mogadishu, Somalia

Abdikani Yusuf Abdulle, Economics Management, School of Social Science, University Sains Malaysia, Penang, 11800, Malaysia

Economics Management, School of Social Science, University Sains Malaysia, Penang, 11800, Malaysia

References

A. Verolino et al., “Assessing volcanic hazard and exposure to lava flows at remote volcanic fields: a case study from the Bolaven Volcanic Field, Laos,” J Appl. Volcanol., vol. 11, no. 1, p. 6, Dec. 2022, doi: 10.1186/s13617-022-00116-z.

I. Suwarno, A. Ma’arif, N. Maharani Raharja, A. Nurjanah, J. Ikhsan, and D. Mutiarin, “IoT-based Lava Flood Early Warning System with Rainfall Intensity Monitoring and Disaster Communication Technology,” Emerg Sci J, vol. 4, pp. 154–166, Dec. 2021, doi: 10.28991/esj-2021-SP1-011.

E. V. Lebedeva, “Catastrophic Processes in River Valleys of Volcanic Regions: Geomorphologist’s Point of View,” in Updates in Volcanology - Linking Active Volcanism and the Geological Record, K. Németh, Ed., IntechOpen, 2023. doi: 10.5772/intechopen.108141.

E. Husni et al., “Microclimate investigation of vehicular traffic on the urban heat island through IoT-Based device,” Heliyon, vol. 8, no. 11, p. e11739, Nov. 2022, doi: 10.1016/j.heliyon.2022.e11739.

M. I. Hastuti, K.-H. Min, and J.-W. Lee, “Improving Radar Data Assimilation Forecast Using Advanced Remote Sensing Data,” Remote Sensing, vol. 15, no. 11, p. 2760, May 2023, doi: 10.3390/rs15112760.

M. Ramdhan et al., “Detailed seismic imaging of Merapi volcano, Indonesia, from local earthquake travel-time tomography,” Journal of Asian Earth Sciences, vol. 177, pp. 134–145, Jun. 2019, doi: 10.1016/j.jseaes.2019.03.018.

Y. Prasetyo, R. Pratiwi, and N. Bashit, “The Impacts Analysis of Pre And Post Merapi Mount Eruption on Residential Areas Using Sentinel 1, ALOS Palsar and Landsat Satellite Images Combination in 2009-2015,” IOP Conf. Ser.: Earth Environ. Sci., vol. 165, p. 012022, Jun. 2018, doi: 10.1088/1755-1315/165/1/012022.

Z. Rozaki et al., “Farmers’ food security in the volcanic area: A case in Mount Merapi, Indonesia,” Open Agriculture, vol. 7, no. 1, pp. 554–565, Jul. 2022, doi: 10.1515/opag-2022-0122.

D. Blake, T. Wilson, J. Cole, N. Deligne, and J. Lindsay, “Impact of Volcanic Ash on Road and Airfield Surface Skid Resistance,” Sustainability, vol. 9, no. 8, p. 1389, Aug. 2017, doi: 10.3390/su9081389.

J. Liu, J. Liu, X. Chen, and W. Guo, “Volcanic Natural Resources and Volcanic Landscape Protection: An Overview,” in Updates in Volcanology - New Advances in Understanding Volcanic Systems, K. Nemeth, Ed., InTech, 2012. doi: 10.5772/54586.

Abimanyu, L. Katriani, and D. Darmawan, “Design of Automatic Rain Gauge Prototype (ARG) As An Early Warning Indicator for Cold Lava Flood Based on The Internet of Things (IoT),” J. Phys.: Conf. Ser., vol. 1805, no. 1, p. 012013, Mar. 2021, doi: 10.1088/1742-6596/1805/1/012013.

B. Revilla-Romero et al., “On the Use of Global Flood Forecasts and Satellite-Derived Inundation Maps for Flood Monitoring in Data-Sparse Regions,” Remote Sensing, vol. 7, no. 11, pp. 15702–15728, Nov. 2015, doi: 10.3390/rs71115702.

A. N. N. Chamim, D. C. Hardyanto, and K. T. Putra, “Web-Based Flood Hazard Monitoring,” jrc, vol. 2, no. 5, 2021, doi: 10.18196/jrc.25110.

H. Hambali, A. Akbar, and A. Yani, “EARLY WARNING SYSTEM FOR FLOOD IN GUNUNGSARI DISTRICT BASED ON IOT WITH TELEGRAM BOT AS A WARNING MESSAGE SENDER,” pilar, vol. 18, no. 2, pp. 173–178, Sep. 2022, doi: 10.33480/pilar.v18i2.3711.

B. E. Jones, “Measurement: Past, Present and Future: Part 2 Measurement Instrumentation and Sensors,” Measurement and Control, vol. 46, no. 4, pp. 115–121, May 2013, doi: 10.1177/0020294013485675.

M. Javaid, A. Haleem, S. Rab, R. Pratap Singh, and R. Suman, “Sensors for daily life: A review,” Sensors International, vol. 2, p. 100121, 2021, doi: 10.1016/j.sintl.2021.100121.

S. Kumar, P. Tiwari, and M. Zymbler, “Internet of Things is a revolutionary approach for future technology enhancement: a review,” J Big Data, vol. 6, no. 1, p. 111, Dec. 2019, doi: 10.1186/s40537-019-0268-2.

F. Yang and S. Gu, “Industry 4.0, a revolution that requires technology and national strategies,” Complex Intell. Syst., vol. 7, no. 3, pp. 1311–1325, Jun. 2021, doi: 10.1007/s40747-020-00267-9.

M. Bouzidi, M. Mohamed, Y. Dalveren, A. Moldsvor, F. A. Cheikh, and M. Derawi, “Propagation Measurements for IQRF Network in an Urban Environment,” Sensors, vol. 22, no. 18, p. 7012, Sep. 2022, doi: 10.3390/s22187012.

S. Matuska, J. Machaj, M. Hutar, and P. Brida, “A Development of an IoT-Based Connected University System: Progress Report,” Sensors, vol. 23, no. 6, p. 2875, Mar. 2023, doi: 10.3390/s23062875.

V. Sobeslav and J. Horalek, “A Smart Parking System Based on Mini PC Platform and Mobile Application for Parking Space Detection,” Mobile Information Systems, vol. 2020, pp. 1–15, Oct. 2020, doi: 10.1155/2020/8875301.

V. D. Nguyen, N. M. Luu, Q. K. Nguyen, and T.-D. Nguyen, “Estimation of the Acoustic Transducer Beam Aperture by Using the Geometric Backscattering Model for Side-Scan Sonar Systems,” Sensors, vol. 23, no. 4, p. 2190, Feb. 2023, doi: 10.3390/s23042190.

S. Middelhoek, “Celebration of the tenth transducers conference,” Sensors and Actuators A: Physical, vol. 82, no. 1–3, pp. 2–23, May 2000, doi: 10.1016/S0924-4247(99)00395-7.

J. Y. Pyun, Y. H. Kim, and K. K. Park, “Design of Piezoelectric Acoustic Transducers for Underwater Applications,” Sensors, vol. 23, no. 4, p. 1821, Feb. 2023, doi: 10.3390/s23041821.

H. Aasen, E. Honkavaara, A. Lucieer, and P. Zarco-Tejada, “Quantitative Remote Sensing at Ultra-High Resolution with UAV Spectroscopy: A Review of Sensor Technology, Measurement Procedures, and Data Correction Workflows,” Remote Sensing, vol. 10, no. 7, p. 1091, Jul. 2018, doi: 10.3390/rs10071091.

S. G. Pawar, N. V. Pradnyakar, and J. P. Modak, “Piezoelectric transducer as a renewable energy source: A review,” J. Phys.: Conf. Ser., vol. 1913, no. 1, p. 012042, May 2021, doi: 10.1088/1742-6596/1913/1/012042.

C. Covaci and A. Gontean, “Piezoelectric Energy Harvesting Solutions: A Review,” Sensors, vol. 20, no. 12, p. 3512, Jun. 2020, doi: 10.3390/s20123512.

E. O. Polat et al., “Transducer Technologies for Biosensors and Their Wearable Applications,” Biosensors, vol. 12, no. 6, p. 385, Jun. 2022, doi: 10.3390/bios12060385.

X. Qing, W. Li, Y. Wang, and H. Sun, “Piezoelectric Transducer-Based Structural Health Monitoring for Aircraft Applications,” Sensors, vol. 19, no. 3, p. 545, Jan. 2019, doi: 10.3390/s19030545.

E. Media’s, . S., and M. Rif’an, “Internet of Things (IoT): BLYNK Framework for Smart Home,” KSS, vol. 3, no. 12, p. 579, Mar. 2019, doi: 10.18502/kss.v3i12.4128.

R. A. Asmara, A. Prasetyo, S. Stevani, and R. I. Hapsari, “Prediksi Banjir Lahar Dingin pada Lereng Merapi menggunakan Data Curah Hujan dari Satelit,” JIP, vol. 7, no. 2, pp. 35–42, Feb. 2021, doi: 10.33795/jip.v7i2.494.

I. Santoso and T. B. Aji, “SISTEM PERINGATAN DINI BANJIR LAHAR DINGIN DENGAN INDIKATOR SIGNAL SUARA DAN TINGGI MUKA AIR,” 2012.

S. M. S. Syed Musa, M. S. Md Noorani, F. Abdul Razak, M. Ismail, M. A. Alias, and S. I. Hussain, “An Early Warning System for Flood Detection Using Critical Slowing Down,” IJERPH, vol. 17, no. 17, p. 6131, Aug. 2020, doi: 10.3390/ijerph17176131.

K. Németh and M. R. Moufti, “Lava Flow Hazard and Its Implication in Geopark Development for the Active Harrat Khaybar Intracontinental Monogenetic Volcanic Field, Saudi Arabia,” Land, vol. 12, no. 3, p. 705, Mar. 2023, doi: 10.3390/land12030705.

W. L. Hakim, S. Ramayanti, S. Park, B. Ko, D.-K. Cheong, and C.-W. Lee, “Estimating the Pre-Historical Volcanic Eruption in the Hantangang River Volcanic Field: Experimental and Simulation Study,” Remote Sensing, vol. 14, no. 4, p. 894, Feb. 2022, doi: 10.3390/rs14040894.

T. C. Pierson, N. J. Wood, and C. L. Driedger, “Reducing risk from lahar hazards: concepts, case studies, and roles for scientists,” J Appl. Volcanol., vol. 3, no. 1, p. 16, Dec. 2014, doi: 10.1186/s13617-014-0016-4.

B. Supartono, M. Dj. Ambari, and M. Rudi, “Community Centered Mitigation Based on Science Literature to Reduce The Risk of Disaster in Indonesia,” IRCHJ, vol. 1, no. 1, pp. 26–33, Jun. 2022, doi: 10.56744/irchum.v1i1.12.

R. N. Purnamawati, St. Afifah, and A. Ariswan, “Student Perceptions of Volcanic Eruption Disaster Preparedness in Sleman,” jppipa, pendidikan ipa, fisika, biologi, kimia, vol. 8, no. 4, pp. 2013–2017, Oct. 2022, doi: 10.29303/jppipa.v8i4.1267.

M. Iqbal, “Disaster Management in Indonesia: A Lesson from the 2010 Eruption of Mount Merapi,” Unisia, Dec. 2021, doi: 10.20885/unisia.vol39.iss1.art1.

M. S. Mohd Sabre, S. S. Abdullah, and A. Faruq, “Flood Warning and Monitoring System Utilizing Internet of Things Technology,” KINETIK, pp. 287–296, Oct. 2019, doi: 10.22219/kinetik.v4i4.898.

“Rahayu et al. - 2022 - Prototype Flood Detection Water Level Monitoring I.pdf.”

G. Zhou, Y. Wang, and L. Cui, “Biomedical Sensor, Device and Measurement Systems,” in Advances in Bioengineering, P. A. Serra, Ed., InTech, 2015. doi: 10.5772/59941.

Y. Lu, “Application Research on Sensors and Detection Technology in Mechatronics System,” J. Phys.: Conf. Ser., vol. 2302, no. 1, p. 012007, Jul. 2022, doi: 10.1088/1742-6596/2302/1/012007.

J. Gölz and C. Hatzfeld, “Sensor Design,” in Engineering Haptic Devices, T. A. Kern, C. Hatzfeld, and A. Abbasimoshaei, Eds., in Springer Series on Touch and Haptic Systems. Cham: Springer International Publishing, 2023, pp. 431–516. doi: 10.1007/978-3-031-04536-3_10.

R. Jaros et al., “Advanced Signal Processing Methods for Condition Monitoring,” Arch Computat Methods Eng, vol. 30, no. 3, pp. 1553–1577, Apr. 2023, doi: 10.1007/s11831-022-09834-4.

S. Böttcher et al., “Data quality evaluation in wearable monitoring,” Sci Rep, vol. 12, no. 1, p. 21412, Dec. 2022, doi: 10.1038/s41598-022-25949-x.

Z. Huang et al., “Recent advances in skin-like wearable sensors: sensor design, health monitoring, and intelligent auxiliary,” Sens. Diagn., vol. 1, no. 4, pp. 686–708, 2022, doi: 10.1039/D2SD00037G.

P. Jin, L. Xu, T. Jiang, L. Zhang, and J. Huang, “Making thermal sensors accurate and invisible with an anisotropic monolayer scheme,” International Journal of Heat and Mass Transfer, vol. 163, p. 120437, Dec. 2020, doi: 10.1016/j.ijheatmasstransfer.2020.120437.

A. A. Trofimova, A. Masciadri, F. Veronese, and F. Salice, “Indoor Human Detection Based on Thermal Array Sensor Data and Adaptive Background Estimation,” JCC, vol. 05, no. 04, pp. 16–28, 2017, doi: 10.4236/jcc.2017.54002.

A. Méndez, “Optics in Medicine,” in Optics in Our Time, M. D. Al-Amri, M. El-Gomati, and M. S. Zubairy, Eds., Cham: Springer International Publishing, 2016, pp. 299–333. doi: 10.1007/978-3-319-31903-2_13.

W. Mao and B. Zhang, “The Use of Digital Image Art under Visual Sensing Technology for Art Education,” Journal of Sensors, vol. 2021, pp. 1–9, Nov. 2021, doi: 10.1155/2021/4513577.

J. E. Losby, V. T. K. Sauer, and M. R. Freeman, “Recent advances in mechanical torque studies of small-scale magnetism,” J. Phys. D: Appl. Phys., vol. 51, no. 48, p. 483001, Dec. 2018, doi: 10.1088/1361-6463/aadccb.

N. I. Hossain and S. Tabassum, “A hybrid multifunctional physicochemical sensor suite for continuous monitoring of crop health,” Sci Rep, vol. 13, no. 1, p. 9848, Jun. 2023, doi: 10.1038/s41598-023-37041-z.

Y. Su et al., “Printable, Highly Sensitive Flexible Temperature Sensors for Human Body Temperature Monitoring: A Review,” Nanoscale Res Lett, vol. 15, no. 1, p. 200, Dec. 2020, doi: 10.1186/s11671-020-03428-4.

C. König and A. M. Helmi, “Sensitivity Analysis of Sensors in a Hydraulic Condition Monitoring System Using CNN Models,” Sensors, vol. 20, no. 11, p. 3307, Jun. 2020, doi: 10.3390/s20113307.

A. J. deMello, Ed., “I’m Sensitive about Sensitivity,” ACS Sens., vol. 7, no. 5, pp. 1235–1236, May 2022, doi: 10.1021/acssensors.2c00982.

T. M. S. Ashrafi and G. Mohanty, “Sensitivity calculation for different prism material based surface plasmon resonance sensor: a comparative study,” J. Phys.: Conf. Ser., vol. 2267, no. 1, p. 012089, May 2022, doi: 10.1088/1742-6596/2267/1/012089.

H. Zhang, Z. Zhang, Z. Li, H. Han, W. Song, and J. Yi, “A chemiresistive-potentiometric multivariate sensor for discriminative gas detection,” Nat Commun, vol. 14, no. 1, p. 3495, Jun. 2023, doi: 10.1038/s41467-023-39213-x.

O. Senvar and S. U. Oktay Firat, “An overview of capability evaluation of Measurement Systems and Gauge Repeatability and Reproducibility Studies,” Int. J. Metrol. Qual. Eng., vol. 1, no. 2, pp. 121–127, 2010, doi: 10.1051/ijmqe/2010022.

M. M. Shanbhag, G. Manasa, R. J. Mascarenhas, K. Mondal, and N. P. Shetti, “Fundamentals of bio-electrochemical sensing,” Chemical Engineering Journal Advances, vol. 16, p. 100516, Nov. 2023, doi: 10.1016/j.ceja.2023.100516.

M. S. A. Ja’farawy et al., “Graphene quantum dot nanocomposites: electroanalytical and optical sensor technology perspective,” J Anal Sci Technol, vol. 14, no. 1, p. 29, Jul. 2023, doi: 10.1186/s40543-023-00393-2.

N. N. Ishak, N. Nayan, M. M. I. Megat Hasnan, N. K. Abd Hamed, Y. Md Yunos, and M. S. Mohamed Ali, “SrSnO3 Perovskite post-deposition on Ag-doped TiO2 rutile nanoflower for optoelectronic application,” Materials Chemistry and Physics, vol. 301, p. 127608, Jun. 2023, doi: 10.1016/j.matchemphys.2023.127608.

L. Larsson et al., “COMPARATIVE STUDY OF TiO2 AND ZnO APPLICATION IN HYBRID SOLAR CELLS USING COPOLYMER P3OT/P3MT,” QN, 2019, doi: 10.21577/0100-4042.20170344.

V. V. Kukharchuk et al., “Information Conversion in Measuring Channels with Optoelectronic Sensors,” Sensors, vol. 22, no. 1, p. 271, Dec. 2021, doi: 10.3390/s22010271.

M. S. Salim, M. F. Abd Malek, R. B. W. Heng, K. M. Juni, and N. Sabri, “Capacitive Micromachined Ultrasonic Transducers: Technology and Application,” Journal of Medical Ultrasound, vol. 20, no. 1, pp. 8–31, Mar. 2012, doi: 10.1016/j.jmu.2012.02.001.

G. Talmelli et al., “Reconfigurable submicrometer spin-wave majority gate with electrical transducers,” Sci. Adv., vol. 6, no. 51, p. eabb4042, Dec. 2020, doi: 10.1126/sciadv.abb4042.

E. Zappino and E. Carrera, “Advanced modeling of embedded piezo-electric transducers for the health-monitoring of layered structures,” International Journal of Smart and Nano Materials, vol. 11, no. 4, pp. 325–342, Oct. 2020, doi: 10.1080/19475411.2020.1841038.

B. Gauthier, A. Thon, and P. Belanger, “Comparison of a piezoceramic transducer and an EMAT for the omnidirectional transduction of SH0,” presented at the 44TH ANNUAL REVIEW OF PROGRESS IN QUANTITATIVE NONDESTRUCTIVE EVALUATION, VOLUME 37, Provo, Utah, USA, 2018, p. 230005. doi: 10.1063/1.5031652.

K. Kim, H.-P. Sohn, H. Lee, and S.-K. Hong, “A Current Transducer with Digital Output for Motor Drive,” J. Electr. Eng. Technol., vol. 17, no. 2, pp. 1371–1378, Mar. 2022, doi: 10.1007/s42835-021-00940-0.

P. Hu, L. Zhao, C. Tang, S. Liu, X. Dang, and Y. Hu, “A New Method for Measuring the Rotational Angles of a Precision Spherical Joint Using Eddy Current Sensors,” Sensors, vol. 20, no. 14, p. 4020, Jul. 2020, doi: 10.3390/s20144020.

A. Masi, S. Danzeca, R. Losito, P. Peronnard, R. Secondo, and G. Spiezia, “A high precision radiation-tolerant LVDT conditioning module,” Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol. 745, pp. 73–81, May 2014, doi: 10.1016/j.nima.2014.01.054.

W. Dipon, B. Gamboa, R. Guo, and A. Bhalla, “Energy Harvesting Using a Stacked PZT Transducer for Self-Sustainable Remote Multi-Sensing and Data Logging System,” J. Compos. Sci., vol. 6, no. 2, p. 49, Feb. 2022, doi: 10.3390/jcs6020049.

L. Yan et al., “Energy harvesting using integrated piezoelectric transducer in a composite smart structure for self-powered sensor applications,” Journal of Intelligent Material Systems and Structures, vol. 34, no. 7, pp. 825–835, Apr. 2023, doi: 10.1177/1045389X221121902.

S. Ying et al., “Self-powered direct-current type pressure sensor by polypyrrole/metal Schottky junction,” J. Phys. D: Appl. Phys., vol. 54, no. 42, p. 424008, Oct. 2021, doi: 10.1088/1361-6463/ac196c.

Y. Feng, Y. Zhao, H. Yan, and H. Cai, “A Driving Power Supply for Piezoelectric Transducers Based on an Improved LC Matching Network,” Sensors, vol. 23, no. 12, p. 5745, Jun. 2023, doi: 10.3390/s23125745.

A. E. Özdemir, “Circuit topology for piezoelectric transducers in a piezoelectric energy harvester,” IET Renewable Power Generation, vol. 13, no. 12, pp. 2105–2110, Sep. 2019, doi: 10.1049/iet-rpg.2018.6106.

S. Amir, R. Van Der Zee, and B. Nauta, “A Self-Oscillating Boosting Amplifier With Adaptive Soft Switching Control for Piezoelectric Transducers,” IEEE J. Solid-State Circuits, vol. 54, no. 1, pp. 253–265, Jan. 2019, doi: 10.1109/JSSC.2018.2871633.

Y. Kuwajima et al., “Electrochemical Dual Transducer for Fluidic Self-Sensing Actuation,” ACS Appl. Mater. Interfaces, vol. 14, no. 2, pp. 3496–3503, Jan. 2022, doi: 10.1021/acsami.1c21076.

S.-H. Kwon et al., “An effective energy harvesting method from a natural water motion active transducer,” Energy Environ. Sci., vol. 7, no. 10, pp. 3279–3283, Apr. 2014, doi: 10.1039/C4EE00588K.

J. D. Pino et al., “A Ku-Band GaN-on-Si MMIC Power Amplifier with an Asymmetrical Output Combiner,” Sensors, vol. 23, no. 14, p. 6377, Jul. 2023, doi: 10.3390/s23146377.

H. Zong et al., “Reducing the Influence of Environmental Factors on Performance of a Diffusion-Based Personal Exposure Kit,” Sensors, vol. 21, no. 14, p. 4637, Jul. 2021, doi: 10.3390/s21144637.

Z. Boulouard, M. Ouaissa, M. Ouaissa, F. Siddiqui, M. Almutiq, and M. Krichen, “An Integrated Artificial Intelligence of Things Environment for River Flood Prevention,” Sensors, vol. 22, no. 23, p. 9485, Dec. 2022, doi: 10.3390/s22239485.

M. Waseem and S. D. Manshadi, “Electricity grid resilience amid various natural disasters: Challenges and solutions,” The Electricity Journal, vol. 33, no. 10, p. 106864, Dec. 2020, doi: 10.1016/j.tej.2020.106864.

I. Suwarno, A. Ma’arif, N. Maharani Raharja, A. Nurjanah, J. Ikhsan, and D. Mutiarin, “IoT-based Lava Flood Early Warning System with Rainfall Intensity Monitoring and Disaster Communication Technology,” Emerg Sci J, vol. 4, pp. 154–166, Dec. 2021, doi: 10.28991/esj-2021-SP1-011.

Yuyun, H. Zulfaesa, and L. A. Abdul, “Early Warning System for Flood Disasters Using the Internet of Things:,” in Proceedings of the International Joint Conference on Science and Engineering (IJCSE 2020), Surabaya, East Java, Indonesia: Atlantis Press, 2020. doi: 10.2991/aer.k.201124.002.

V. Tarchiani et al., “Community and Impact Based Early Warning System for Flood Risk Preparedness: The Experience of the Sirba River in Niger,” Sustainability, vol. 12, no. 5, p. 1802, Feb. 2020, doi: 10.3390/su12051802.

D. Perera, O. Seidou, J. Agnihotri, H. Mehmood, and M. Rasmy, “Challenges and Technical Advances in Flood Early Warning Systems (FEWSs),” in Flood Impact Mitigation and Resilience Enhancement, G. Huang, Ed., IntechOpen, 2020. doi: 10.5772/intechopen.93069.

D. P. Susman, C. Rangkuti, and S. Novianto, “Designing, Manufacturing, and Testing of 50 Wp Solar Panel Monitor Equipment Using Arduino and Internet of Things,” Journal of Earth Energy Science, Engineering, and Technology, vol. 6, no. 1, Apr. 2023, doi: 10.25105/jeeset.v6i1.14445.

K. Kalyani Radha and M. Ashok Chakravarthy, “Fabrication of solar robotic vacuum cleaner,” Materials Today: Proceedings, p. S2214785323037951, Aug. 2023, doi: 10.1016/j.matpr.2023.06.401.

J. J. García-Guzmán, C. Pérez-Ràfols, M. Cuartero, and G. A. Crespo, “Microneedle based electrochemical (Bio)Sensing: Towards decentralized and continuous health status monitoring,” TrAC Trends in Analytical Chemistry, vol. 135, p. 116148, Feb. 2021, doi: 10.1016/j.trac.2020.116148.

J. Brasington, D. Vericat, and I. Rychkov, “Modeling river bed morphology, roughness, and surface sedimentology using high resolution terrestrial laser scanning: MODELING RIVER BED MORPHOLOGY WITH TLS,” Water Resour. Res., vol. 48, no. 11, Nov. 2012, doi: 10.1029/2012WR012223.

R. Tawalbeh, F. Alasali, Z. Ghanem, M. Alghazzawi, A. Abu-Raideh, and W. Holderbaum, “Innovative Characterization and Comparative Analysis of Water Level Sensors for Enhanced Early Detection and Warning of Floods,” JLPEA, vol. 13, no. 2, p. 26, Apr. 2023, doi: 10.3390/jlpea13020026.

A. L. Bowler, S. Bakalis, and N. J. Watson, “Monitoring Mixing Processes Using Ultrasonic Sensors and Machine Learning,” Sensors, vol. 20, no. 7, p. 1813, Mar. 2020, doi: 10.3390/s20071813.

S. Sun, J. Wang, Y. Ning, and M. Zhang, “Air-coupled piezoelectric micromachined ultrasonic transducers for surface stain detection and imaging,” Nanotechnology and Precision Engineering, vol. 5, no. 1, p. 013004, Mar. 2022, doi: 10.1063/10.0009632.

Peng Li, Yulei Cai, Xiaolong Shen, S. Nabuzaale, Jie Yin, and Jiaqiang Li, “An Accurate Detection for Dynamic Liquid Level Based on MIMO Ultrasonic Transducer Array,” IEEE Trans. Instrum. Meas., vol. 64, no. 3, pp. 582–595, Mar. 2015, doi: 10.1109/TIM.2014.2357586.

L. Liang and J. Daniels, “What Influences Low-cost Sensor Data Calibration? - A Systematic Assessment of Algorithms, Duration, and Predictor Selection,” Aerosol Air Qual. Res., vol. 22, no. 9, p. 220076, 2022, doi: 10.4209/aaqr.220076.

B. Li, K. Németh, J. Palmer, A. Palmer, V. Zakharovskyi, and I. Gravis, “Eruption Scenario Builder Based on the most Recent Fissure-Feed Lava-Producing Eruptions of the Arxan-Chaihe Volcanic Field (ACVF), NE China,” in Updates in Volcanology - Linking Active Volcanism and the Geological Record, K. Németh, Ed., IntechOpen, 2023. doi: 10.5772/intechopen.109908.

H. Saheban and Z. Kordrostami, “Hydrophones, fundamental features, design considerations, and various structures: A review,” Sensors and Actuators A: Physical, vol. 329, p. 112790, Oct. 2021, doi: 10.1016/j.sna.2021.112790.

G. Su et al., “Balancing the mechanical, electronic, and self-healing properties in conductive self-healing hydrogel for wearable sensor applications,” Mater. Horiz., vol. 8, no. 6, pp. 1795–1804, 2021, doi: 10.1039/D1MH00085C.

H. Y. Razzaq, H. M. Hasan, and K. R. Abbas, “Machine Design Modern Techniques and Innovative Technologies,” J. Phys.: Conf. Ser., vol. 1897, no. 1, p. 012072, May 2021, doi: 10.1088/1742-6596/1897/1/012072.

C. D. Gerardo, E. Cretu, and R. Rohling, “Fabrication and testing of polymer-based capacitive micromachined ultrasound transducers for medical imaging,” Microsyst Nanoeng, vol. 4, no. 1, p. 19, Aug. 2018, doi: 10.1038/s41378-018-0022-5.

J. M. Rothberg et al., “Ultrasound-on-chip platform for medical imaging, analysis, and collective intelligence,” Proc. Natl. Acad. Sci. U.S.A., vol. 118, no. 27, p. e2019339118, Jul. 2021, doi: 10.1073/pnas.2019339118.

A. Ng and J. Swanevelder, “Resolution in ultrasound imaging,” Continuing Education in Anaesthesia Critical Care & Pain, vol. 11, no. 5, pp. 186–192, Oct. 2011, doi: 10.1093/bjaceaccp/mkr030.

H. C. Ates et al., “End-to-end design of wearable sensors,” Nat Rev Mater, vol. 7, no. 11, pp. 887–907, Jul. 2022, doi: 10.1038/s41578-022-00460-x.

A. G. Athanassiadis et al., “Ultrasound-Responsive Systems as Components for Smart Materials,” Chem. Rev., vol. 122, no. 5, pp. 5165–5208, Mar. 2022, doi: 10.1021/acs.chemrev.1c00622.

R. Funari and A. Q. Shen, “Detection and Characterization of Bacterial Biofilms and Biofilm-Based Sensors,” ACS Sens., vol. 7, no. 2, pp. 347–357, Feb. 2022, doi: 10.1021/acssensors.1c02722.

S. Demis and V. G. Papadakis, “Durability design process of reinforced concrete structures - Service life estimation, problems and perspectives,” Journal of Building Engineering, vol. 26, p. 100876, Nov. 2019, doi: 10.1016/j.jobe.2019.100876.

A. Romanova, K. V. Horoshenkov, and A. Hurrell, “An application of a parametric transducer to measure acoustic absorption of a living green wall,” Applied Acoustics, vol. 145, pp. 89–97, Feb. 2019, doi: 10.1016/j.apacoust.2018.09.020.

Y. Cotur, M. Kasimatis, M. Kaisti, S. Olenik, C. Georgiou, and F. Güder, “Stretchable Composite Acoustic Transducer for Wearable Monitoring of Vital Signs,” Adv Funct Materials, vol. 30, no. 16, p. 1910288, Apr. 2020, doi: 10.1002/adfm.201910288.

Y. Matsumoto, A. Katsumura, and N. Miki, “Pressure-controlled ultrasound probe for reliable imaging in breast cancer diagnosis,” Jpn. J. Appl. Phys., vol. 61, no. SD, p. SD1035, Jun. 2022, doi: 10.35848/1347-4065/ac58f1.

Downloads

Published

2022-05-28

How to Cite

Iswanto, I., John Minto, Esraa Abdellatif Hammouda, Mohamed Yusuf Hassan, & Abdikani Yusuf Abdulle. (2022). Sensors and Transducers for Lava Flood Detection: Systematic Literature Review. Sunan Kalijaga Journal of Physics, 4(1), 23–36. Retrieved from https://ejournal.uin-suka.ac.id/saintek/physics/article/view/4231