Sensors and Transducers for Stroke Detection Systematic Literature Review

Authors

  • Iswanto Suwarno Universitas Muhammadiyah Yogyakarta, Yogyakarta, Indonesia
  • Rezarta Lalo Department of Health Care, Faculty of Health, University of Vlora “Ismail Qemali”, L. Pavarësia, Vlorë, 9400, Albania
  • Elena Costru-Tasnic Neurology Department no. 1, Nicolae Testemitanu State University of Medicine and Pharmacy, Chisinau, Moldova
  • Jan van der Merwe Boehringer Ingelheim International GmbH, Ingelheim am Rhein, Germany
  • Husitha Vanguru Department of Neurology, University of Kansas Medical Center, Kansas City, United States

Keywords:

Detection, Sensors, Transducer, Stroke

Abstract

Along with changes in lifestyle, stroke is not only a disease that attacks the elderly population, but also often attacks people of productive age. Actions are proposed to the public to control risk factors, such as changing lifestyle behavior or taking medication, and variations in stroke risk are tracked by evaluating stroke risk annually. The symptom of stroke that is currently widely known by the public is paralysis, even though many stroke symptoms often appear without realizing it. So it is necessary to detect stroke using sensors and transducers to detect it. The aim of this research is to examine sensors and transducers for stroke detection. This research uses a systematic literature review using Preferred Reporting Items for Systematic Reviews (PRISMA). The results of article screening and selection found 84 potential articles that met the inclusion criteria. The research results show that the development of sensors and transducers for stroke detection is currently starting to develop through artificial intelligence based on the internet of thought which uses sensors and transducers within it. Judging from the production of tools that use sensors and transducers for stroke detection. Optimization of sensors and transducers for stroke detection must be carried out with appropriate use, detailed regulatory supervision, and continuous innovation of sensors and transducers for stroke detection which is useful in reducing the number of strokes in the world

Author Biographies

Iswanto Suwarno, Universitas Muhammadiyah Yogyakarta, Yogyakarta, Indonesia

Department of Electrical Engineering, Universitas Muhammadiyah Yogyakarta, Yogyakarta, Indonesia

Rezarta Lalo, Department of Health Care, Faculty of Health, University of Vlora “Ismail Qemali”, L. Pavarësia, Vlorë, 9400, Albania

Department of Health Care, Faculty of Health, University of Vlora “Ismail Qemali”, L. Pavarësia, Vlorë, 9400, Albania

Elena Costru-Tasnic, Neurology Department no. 1, Nicolae Testemitanu State University of Medicine and Pharmacy, Chisinau, Moldova

Neurology Department no. 1, Nicolae Testemitanu State University of Medicine and Pharmacy, Chisinau, Moldova

Jan van der Merwe, Boehringer Ingelheim International GmbH, Ingelheim am Rhein, Germany

Boehringer Ingelheim International GmbH, Ingelheim am Rhein, Germany

Husitha Vanguru, Department of Neurology, University of Kansas Medical Center, Kansas City, United States

Department of Neurology, University of Kansas Medical Center, Kansas City, United States

References

V. L. Feigin et al., “Global, regional, and national burden of stroke and its risk factors, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019,” The Lancet Neurology, vol. 20, no. 10, pp. 795–820, Oct. 2021, doi: 10.1016/S1474-4422(21)00252-0.

R. L. Sacco et al., “An Updated Definition of Stroke for the 21st Century: A Statement for Healthcare Professionals From the American Heart Association/American Stroke Association,” Stroke, vol. 44, no. 7, pp. 2064–2089, Jul. 2013, doi: 10.1161/STR.0b013e318296aeca.

T. Vos et al., “Global burden of 369 diseases and injuries in 204 countries and territories, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019,” The Lancet, vol. 396, no. 10258, pp. 1204–1222, Oct. 2020, doi: 10.1016/S0140-6736(20)30925-9.

T. Yan et al., “Burden, Trends, and Inequalities of Heart Failure Globally, 1990 to 2019: A Secondary Analysis Based on the Global Burden of Disease 2019 Study,” JAHA, vol. 12, no. 6, p. e027852, Mar. 2023, doi: 10.1161/JAHA.122.027852.

Abimanyu, L. Katriani, and D. Darmawan, “Design of Automatic Rain Gauge Prototype (ARG) As An Early Warning Indicator for Cold Lava Flood Based on The Internet of Things (IoT),” J. Phys.: Conf. Ser., vol. 1805, no. 1, p. 012013, Mar. 2021, doi: 10.1088/1742-6596/1805/1/012013.

N. Razfar, R. Kashef, and F. Mohammadi, “Automatic Post-Stroke Severity Assessment Using Novel Unsupervised Consensus Learning for Wearable and Camera-Based Sensor Datasets,” Sensors, vol. 23, no. 12, p. 5513, Jun. 2023, doi: 10.3390/s23125513.

A. Haleem, M. Javaid, R. P. Singh, R. Suman, and S. Rab, “Biosensors applications in medical field: A brief review,” Sensors International, vol. 2, p. 100100, 2021, doi: 10.1016/j.sintl.2021.100100.

H. Rawat and Y. Pathak, “Smart Sensors: Analyzing Efficiency of Smart Sensors in Public Domain,” SSRN Journal, 2019, doi: 10.2139/ssrn.3517663.

M. Javaid, A. Haleem, S. Rab, R. Pratap Singh, and R. Suman, “Sensors for daily life: A review,” Sensors International, vol. 2, p. 100121, 2021, doi: 10.1016/j.sintl.2021.100121.

S. Kumar, P. Tiwari, and M. Zymbler, “Internet of Things is a revolutionary approach for future technology enhancement: a review,” J Big Data, vol. 6, no. 1, p. 111, Dec. 2019, doi: 10.1186/s40537-019-0268-2.

M. S. Abdalzaher, M. Krichen, D. Yiltas-Kaplan, I. Ben Dhaou, and W. Y. H. Adoni, “Early Detection of Earthquakes Using IoT and Cloud Infrastructure: A Survey,” Sustainability, vol. 15, no. 15, p. 11713, Jul. 2023, doi: 10.3390/su151511713.

V. D. Nguyen, N. M. Luu, Q. K. Nguyen, and T.-D. Nguyen, “Estimation of the Acoustic Transducer Beam Aperture by Using the Geometric Backscattering Model for Side-Scan Sonar Systems,” Sensors, vol. 23, no. 4, p. 2190, Feb. 2023, doi: 10.3390/s23042190.

S. Middelhoek, “Celebration of the tenth transducers conference,” Sensors and Actuators A: Physical, vol. 82, no. 1–3, pp. 2–23, May 2000, doi: 10.1016/S0924-4247(99)00395-7.

J. Y. Pyun, Y. H. Kim, and K. K. Park, “Design of Piezoelectric Acoustic Transducers for Underwater Applications,” Sensors, vol. 23, no. 4, p. 1821, Feb. 2023, doi: 10.3390/s23041821.

E. O. Polat et al., “Transducer Technologies for Biosensors and Their Wearable Applications,” Biosensors, vol. 12, no. 6, p. 385, Jun. 2022, doi: 10.3390/bios12060385.

B. E. Jones, “Measurement: Past, Present and Future: Part 2 Measurement Instrumentation and Sensors,” Measurement and Control, vol. 46, no. 4, pp. 115–121, May 2013, doi: 10.1177/0020294013485675.

S. G. Pawar, N. V. Pradnyakar, and J. P. Modak, “Piezoelectric transducer as a renewable energy source: A review,” J. Phys.: Conf. Ser., vol. 1913, no. 1, p. 012042, May 2021, doi: 10.1088/1742-6596/1913/1/012042.

C. Covaci and A. Gontean, “Piezoelectric Energy Harvesting Solutions: A Review,” Sensors, vol. 20, no. 12, p. 3512, Jun. 2020, doi: 10.3390/s20123512.

E. Media’s, . S., and M. Rif’an, “Internet of Things (IoT): BLYNK Framework for Smart Home,” KSS, vol. 3, no. 12, p. 579, Mar. 2019, doi: 10.18502/kss.v3i12.4128.

H. Aasen, E. Honkavaara, A. Lucieer, and P. Zarco-Tejada, “Quantitative Remote Sensing at Ultra-High Resolution with UAV Spectroscopy: A Review of Sensor Technology, Measurement Procedures, and Data Correction Workflows,” Remote Sensing, vol. 10, no. 7, p. 1091, Jul. 2018, doi: 10.3390/rs10071091.

X. Qing, W. Li, Y. Wang, and H. Sun, “Piezoelectric Transducer-Based Structural Health Monitoring for Aircraft Applications,” Sensors, vol. 19, no. 3, p. 545, Jan. 2019, doi: 10.3390/s19030545.

N. Takashima et al., “Two-Year Recurrence After First-Ever Stroke in a General Population of 1.4 Million Japanese Patients ― The Shiga Stroke and Heart Attack Registry Study ―,” Circ J, vol. 84, no. 6, pp. 943–948, May 2020, doi: 10.1253/circj.CJ-20-0024.

B. P. Berghout, D. Bos, P. J. Koudstaal, M. A. Ikram, and M. K. Ikram, “Risk of recurrent stroke in Rotterdam between 1990 and 2020: a population-based cohort study,” The Lancet Regional Health - Europe, vol. 30, p. 100651, Jul. 2023, doi: 10.1016/j.lanepe.2023.100651.

C. Juli et al., “The number of risk factors increases the recurrence events in ischemic stroke,” Eur J Med Res, vol. 27, no. 1, p. 138, Dec. 2022, doi: 10.1186/s40001-022-00768-y.

U. Lazcano et al., “Increased COVID-19 Mortality in People With Previous Cerebrovascular Disease: A Population-Based Cohort Study,” Stroke, vol. 53, no. 4, pp. 1276–1284, Apr. 2022, doi: 10.1161/STROKEAHA.121.036257.

E. De Montmollin et al., “Pneumonia in acute ischemic stroke patients requiring invasive ventilation: Impact on short and long-term outcomes,” Journal of Infection, vol. 79, no. 3, pp. 220–227, Sep. 2019, doi: 10.1016/j.jinf.2019.06.012.

J. C. Hemphill et al., “Guidelines for the Management of Spontaneous Intracerebral Hemorrhage: A Guideline for Healthcare Professionals From the American Heart Association/American Stroke Association,” Stroke, vol. 46, no. 7, pp. 2032–2060, Jul. 2015, doi: 10.1161/STR.0000000000000069.

I. Athar et al., “Reliability of Siriraj stroke score to distinguish between hemorrhagic and ischemic stroke,” Brain Hemorrhages, vol. 4, no. 1, pp. 13–16, Mar. 2023, doi: 10.1016/j.hest.2022.07.002.

A. L. De Oliveira Manoel, A. Goffi, T. R. Marotta, T. A. Schweizer, S. Abrahamson, and R. L. Macdonald, “The critical care management of poor-grade subarachnoid haemorrhage,” Crit Care, vol. 20, no. 1, p. 21, Dec. 2016, doi: 10.1186/s13054-016-1193-9.

C. Qin et al., “Signaling pathways involved in ischemic stroke: molecular mechanisms and therapeutic interventions,” Sig Transduct Target Ther, vol. 7, no. 1, p. 215, Jul. 2022, doi: 10.1038/s41392-022-01064-1.

P. Amarenco, J. Bogousslavsky, L. R. Caplan, G. A. Donnan, and M. G. Hennerici, “Classification of Stroke Subtypes,” Cerebrovasc Dis, vol. 27, no. 5, pp. 493–501, 2009, doi: 10.1159/000210432.

S. Bernardo-Castro et al., “Pathophysiology of Blood–Brain Barrier Permeability Throughout the Different Stages of Ischemic Stroke and Its Implication on Hemorrhagic Transformation and Recovery,” Front. Neurol., vol. 11, p. 594672, Dec. 2020, doi: 10.3389/fneur.2020.594672.

K. Walter, “What Is Acute Ischemic Stroke?,” JAMA, vol. 327, no. 9, p. 885, Mar. 2022, doi: 10.1001/jama.2022.1420.

J. Magid-Bernstein et al., “Cerebral Hemorrhage: Pathophysiology, Treatment, and Future Directions,” Circ Res, vol. 130, no. 8, pp. 1204–1229, Apr. 2022, doi: 10.1161/CIRCRESAHA.121.319949.

C. Grefkes and G. R. Fink, “Recovery from stroke: current concepts and future perspectives,” Neurol. Res. Pract., vol. 2, no. 1, p. 17, Dec. 2020, doi: 10.1186/s42466-020-00060-6.

A. K. Boehme, C. Esenwa, and M. S. V. Elkind, “Stroke Risk Factors, Genetics, and Prevention,” Circ Res, vol. 120, no. 3, pp. 472–495, Feb. 2017, doi: 10.1161/CIRCRESAHA.116.308398.

M. Z. Saefurrohim, M. Azam, S. R. Rahayu, and W. H. Cahyati, “Incidence of Stroke and Associated Risk Factors in Bogor, Indonesia: A Nested Case-Control Study,” Kemas, vol. 17, no. 4, pp. 621–629, Apr. 2022, doi: 10.15294/kemas.v17i4.36022.

V. L. Feigin et al., “World Stroke Organization (WSO): Global Stroke Fact Sheet 2022,” International Journal of Stroke, vol. 17, no. 1, pp. 18–29, Jan. 2022, doi: 10.1177/17474930211065917.

R. Soto-Cámara, J. J. González-Bernal, J. González-Santos, J. M. Aguilar-Parra, R. Trigueros, and R. López-Liria, “Age-Related Risk Factors at the First Stroke Event,” JCM, vol. 9, no. 7, p. 2233, Jul. 2020, doi: 10.3390/jcm9072233.

A. Rizki Ramadhani, M. Saiful Ardhi, and S. Prajitno, “PROFILE OF CHARACTERISTIC, RISK FACTOR, AND STROKE SEVERITY ON INFARCTION STROKE PATIENTS,” MNJ, vol. 8, no. 2, pp. 109–112, Jul. 2022, doi: 10.21776/ub.mnj.2022.008.02.7.

R. D. L. R. Sanyasi and R. T. Pinzon, “Clinical Symptoms and Risk Factors Comparison of Ischemic and Hemorrhagic Stroke,” JKKI, vol. 9, no. 1, pp. 5–15, Apr. 2018, doi: 10.20885/JKKI.Vol9.Iss1.art3.

S. Zhang, W. Zhang, and G. Zhou, “Extended Risk Factors for Stroke Prevention,” Journal of the National Medical Association, vol. 111, no. 4, pp. 447–456, Aug. 2019, doi: 10.1016/j.jnma.2019.02.004.

R.-C. Li et al., “The risk of stroke and associated risk factors in a health examination population: A cross-sectional study,” Medicine, vol. 98, no. 40, p. e17218, Oct. 2019, doi: 10.1097/MD.0000000000017218.

G. Fekadu, L. Chelkeba, and A. Kebede, “Risk factors, clinical presentations and predictors of stroke among adult patients admitted to stroke unit of Jimma university medical center, south west Ethiopia: prospective observational study,” BMC Neurol, vol. 19, no. 1, p. 187, Dec. 2019, doi: 10.1186/s12883-019-1409-0.

L. García, J. Tomás, L. Parra, and J. Lloret, “An m-health application for cerebral stroke detection and monitoring using cloud services,” International Journal of Information Management, vol. 45, pp. 319–327, Apr. 2019, doi: 10.1016/j.ijinfomgt.2018.06.004.

T. Tamura, M. Huang, T. Yoshimura, S. Umezu, and T. Ogata, “An Advanced Internet of Things System for Heatstroke Prevention with a Noninvasive Dual-Heat-Flux Thermometer,” Sensors, vol. 22, no. 24, p. 9985, Dec. 2022, doi: 10.3390/s22249985.

H. Zhao et al., “Wearable sensors and features for diagnosis of neurodegenerative diseases: A systematic review,” DIGITAL HEALTH, vol. 9, p. 205520762311735, Jan. 2023, doi: 10.1177/20552076231173569.

S. Shahrestani et al., “Noninvasive transcranial classification of stroke using a portable eddy current damping sensor,” Sci Rep, vol. 11, no. 1, p. 10297, May 2021, doi: 10.1038/s41598-021-89735-x.

C. Wang, T. He, H. Zhou, Z. Zhang, and C. Lee, “Artificial intelligence enhanced sensors - enabling technologies to next-generation healthcare and biomedical platform,” Bioelectron Med, vol. 9, no. 1, p. 17, Aug. 2023, doi: 10.1186/s42234-023-00118-1.

V. Andrea and I. S. Timan, “Relationship between diabetes mellitus and blood viscosity as measured by the digital microcapillary® system,” J. Phys.: Conf. Ser., vol. 1073, p. 042046, Aug. 2018, doi: 10.1088/1742-6596/1073/4/042046.

S. A. Billinger et al., “Physical Activity and Exercise Recommendations for Stroke Survivors: A Statement for Healthcare Professionals From the American Heart Association/American Stroke Association,” Stroke, vol. 45, no. 8, pp. 2532–2553, Aug. 2014, doi: 10.1161/STR.0000000000000022.

A. Rasyid, S. Harris, M. Kurniawan, T. Mesiano, and R. Hidayat, “Fibrinogen and LDL Influence on Blood Viscosity and Outcome of Acute Ischemic Stroke Patients in Indonesia,” Annals of Neurosciences, vol. 26, no. 3–4, pp. 30–34, Jul. 2019, doi: 10.1177/0972753119900630.

A. Haroun et al., “Progress in micro/nano sensors and nanoenergy for future AIoT-based smart home applications,” Nano Ex., vol. 2, no. 2, p. 022005, Jun. 2021, doi: 10.1088/2632-959X/abf3d4.

Q. Shi, Y. Yang, Z. Sun, and C. Lee, “Progress of Advanced Devices and Internet of Things Systems as Enabling Technologies for Smart Homes and Health Care,” ACS Mater. Au, vol. 2, no. 4, pp. 394–435, Jul. 2022, doi: 10.1021/acsmaterialsau.2c00001.

U. Umar, S. Syarif, I. Nurtanio, and Indrabayu, “A Non-Invasive Method Applied to Measure Cholesterol and Glucose Levels,” Journal of Hunan University Natural Sciences, vol. 49, no. 10, pp. 163–173, Oct. 2022, doi: 10.55463/issn.1674-2974.49.10.18.

B. Bent et al., “Engineering digital biomarkers of interstitial glucose from noninvasive smartwatches,” npj Digit. Med., vol. 4, no. 1, p. 89, Jun. 2021, doi: 10.1038/s41746-021-00465-w.

T. Unger et al., “2020 International Society of Hypertension Global Hypertension Practice Guidelines,” Hypertension, vol. 75, no. 6, pp. 1334–1357, Jun. 2020, doi: 10.1161/HYPERTENSIONAHA.120.15026.

J. W. Nawrocki et al., “Reduction of LDL Cholesterol by 25% to 60% in Patients With Primary Hypercholesterolemia by Atorvastatin, a New HMG-CoA Reductase Inhibitor,” ATVB, vol. 15, no. 5, pp. 678–682, May 1995, doi: 10.1161/01.ATV.15.5.678.

S. Nižetić, P. Šolić, D. López-de-Ipiña González-de-Artaza, and L. Patrono, “Internet of Things (IoT): Opportunities, issues and challenges towards a smart and sustainable future,” Journal of Cleaner Production, vol. 274, p. 122877, Nov. 2020, doi: 10.1016/j.jclepro.2020.122877.

A. F. Pratiwi, Galih Mustiko Aji, Arif Sumardiono, Purwiyanto, and Sari Widya Utami, “Rancang Bangun Pot Pintar Berbasis IoT,” JIPA, vol. 11, no. 1, pp. 1–6, Jun. 2022, doi: 10.55600/jipa.v11i1.126.

L. K. Wardhani, N. Anggraini, N. Hakiem, M. T. Rosyadi, and A. Rois, “IoT-based Integrated System Portable Prayer Mat and DailyWorship Monitoring System,” matrik, vol. 22, no. 3, pp. 639–650, Jul. 2023, doi: 10.30812/matrik.v22i3.3058.

R. Diharja, M. R. Fahlevi, E. S. Rahayu, and W. Handini, “Prototype-Design of Soil Movement Detector Using IoT Hands-on Application,” jppipa, pendidikan ipa, fisika, biologi, kimia, vol. 8, no. 4, pp. 2245–2254, Oct. 2022, doi: 10.29303/jppipa.v8i4.1709.

W. Prima and Y. C. Giap, “Object Detection Radar Prototype with Ultrasonic Sensor Using Iot-Based Arduino,” bit-Tech, vol. 3, no. 2, pp. 81–88, Apr. 2021, doi: 10.32877/bt.v3i2.187.

V. Sapra et al., “Integrated approach using deep neural network and CBR for detecting severity of coronary artery disease,” Alexandria Engineering Journal, vol. 68, pp. 709–720, Apr. 2023, doi: 10.1016/j.aej.2023.01.029.

N. Goldmann et al., “Defining functional requirements for a patient-centric computerized glaucoma treatment and care ecosystem,” J Med Artif Intell, vol. 6, pp. 3–3, Feb. 2023, doi: 10.21037/jmai-22-33.

T. Gattringer et al., “Predicting Early Mortality of Acute Ischemic Stroke: Score-Based Approach,” Stroke, vol. 50, no. 2, pp. 349–356, Feb. 2019, doi: 10.1161/STROKEAHA.118.022863.

G. Liamis et al., “Hyponatremia in Acute Stroke Patients: Pathophysiology, Clinical Significance, and Management Options,” Eur Neurol, vol. 82, no. 1–3, pp. 32–40, 2019, doi: 10.1159/000504475.

C. Alia et al., “Neuroplastic Changes Following Brain Ischemia and their Contribution to Stroke Recovery: Novel Approaches in Neurorehabilitation,” Front. Cell. Neurosci., vol. 11, Mar. 2017, doi: 10.3389/fncel.2017.00076.

B. Y. Sandi, F. Kurniawan, and L. Lasmadi, “Estimasi Sudut Orientasi Rigid Body Dengan Menggunakan Sensor IMU (Inertial Measurement Unit) Dan Magnetometer,” Senatik, vol. 6, Dec. 2020, doi: 10.28989/senatik.v6i0.425.

Y. Hu, S. M. Bejarano, and G. Hoffman, “ShadowSense: Detecting Human Touch in a Social Robot Using Shadow Image Classification,” Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., vol. 4, no. 4, pp. 1–24, Dec. 2020, doi: 10.1145/3432202.

I. Trase, Z. Xu, Z. Chen, H. Tan, and J. X. J. Zhang, “Thin-film bidirectional transducers for haptic wearables,” Sensors and Actuators A: Physical, vol. 303, p. 111655, Mar. 2020, doi: 10.1016/j.sna.2019.111655.

B. Šumak, S. Brdnik, and M. Pušnik, “Sensors and Artificial Intelligence Methods and Algorithms for Human–Computer Intelligent Interaction: A Systematic Mapping Study,” Sensors, vol. 22, no. 1, p. 20, Dec. 2021, doi: 10.3390/s22010020.

A. Wieczorkowska, “Analytics and Applications of Audio and Image Sensing Techniques,” Sensors, vol. 22, no. 21, p. 8443, Nov. 2022, doi: 10.3390/s22218443.

R. Giampiccolo, A. Bernardini, O. Massi, and A. Sarti, “On the Virtualization of Audio Transducers,” Sensors, vol. 23, no. 11, p. 5258, Jun. 2023, doi: 10.3390/s23115258.

M. J. McGrath and C. N. Scanaill, “Sensing and Sensor Fundamentals,” in Sensor Technologies, Berkeley, CA: Apress, 2013, pp. 15–50. doi: 10.1007/978-1-4302-6014-1_2.

M. Gaitan and J. Geist, “Calibration of triaxial accelerometers by constant rotation rate in the gravitational field,” Measurement, vol. 189, p. 110528, Feb. 2022, doi: 10.1016/j.measurement.2021.110528.

P. Franček, K. Jambrošić, M. Horvat, and V. Planinec, “The Performance of Inertial Measurement Unit Sensors on Various Hardware Platforms for Binaural Head-Tracking Applications,” Sensors, vol. 23, no. 2, p. 872, Jan. 2023, doi: 10.3390/s23020872.

H. Hyyti and A. Visala, “A DCM Based Attitude Estimation Algorithm for Low-Cost MEMS IMUs,” International Journal of Navigation and Observation, vol. 2015, pp. 1–18, Nov. 2015, doi: 10.1155/2015/503814.

C. Ferraris et al., “Evaluation of Arm Swing Features and Asymmetry during Gait in Parkinson’s Disease Using the Azure Kinect Sensor,” Sensors, vol. 22, no. 16, p. 6282, Aug. 2022, doi: 10.3390/s22166282.

M. E. Williams and J. C. C. Williams, “The Framework of a Novel Approach for the Analysis of Human Movement for Clinical Purposes,” JSS, vol. 05, no. 06, pp. 7–17, 2017, doi: 10.4236/jss.2017.56002.

P. Baskaran and J. A. Adams, “Multi-dimensional task recognition for human-robot teaming: literature review,” Front. Robot. AI, vol. 10, p. 1123374, Aug. 2023, doi: 10.3389/frobt.2023.1123374.

P. Maceira-Elvira, T. Popa, A.-C. Schmid, and F. C. Hummel, “Wearable technology in stroke rehabilitation: towards improved diagnosis and treatment of upper-limb motor impairment,” J NeuroEngineering Rehabil, vol. 16, no. 1, p. 142, Dec. 2019, doi: 10.1186/s12984-019-0612-y.

P. Maceira-Elvira, T. Popa, A.-C. Schmid, and F. C. Hummel, “Wearable technology in stroke rehabilitation: towards improved diagnosis and treatment of upper-limb motor impairment,” J NeuroEngineering Rehabil, vol. 16, no. 1, p. 142, Dec. 2019, doi: 10.1186/s12984-019-0612-y.

V.-C. Nguyen et al., “Haptic Feedback Device Using 3D-Printed Flexible, Multilayered Piezoelectric Coating for In-Car Touchscreen Interface,” Micromachines, vol. 14, no. 8, p. 1553, Aug. 2023, doi: 10.3390/mi14081553.

D. Wang, Y. Guo, S. Liu, Y. Zhang, W. Xu, and J. Xiao, “Haptic display for virtual reality: progress and challenges,” Virtual Reality & Intelligent Hardware, vol. 1, no. 2, pp. 136–162, Apr. 2019, doi: 10.3724/SP.J.2096-5796.2019.0008.

A. Achberger, F. Heyen, K. Vidackovic, and M. Sedlmair, “Touching data with PropellerHand,” J Vis, vol. 26, no. 1, pp. 161–176, Feb. 2023, doi: 10.1007/s12650-022-00859-2.

X. Zhou, J. L. Mo, and Z. M. Jin, “Overview of finger friction and tactile perception,” Biosurface and Biotribology, vol. 4, no. 4, pp. 99–111, Dec. 2018, doi: 10.1049/bsbt.2018.0032.

G. Ballardini, G. Carlini, P. Giannoni, R. A. Scheidt, I. Nisky, and M. Casadio, “Tactile-STAR: A Novel Tactile STimulator And Recorder System for Evaluating and Improving Tactile Perception,” Front. Neurorobot., vol. 12, p. 12, Apr. 2018, doi: 10.3389/fnbot.2018.00012.

I. Anghel et al., “Smart Environments and Social Robots for Age-Friendly Integrated Care Services,” IJERPH, vol. 17, no. 11, p. 3801, May 2020, doi: 10.3390/ijerph17113801.

L. D. S. Britto Neto, V. R. M. L. Maike, F. L. Koch, M. C. C. Baranauskas, A. D. R. Rocha, and S. K. Goldenstein, “A Wearable Face Recognition System Built into a Smartwatch and the Visually Impaired User:,” in Proceedings of the 17th International Conference on Enterprise Information Systems, Barcelona, Spain: SCITEPRESS - Science and and Technology Publications, 2015, pp. 5–12. doi: 10.5220/0005370200050012.

B. Ways and B. C. Pearson, “Evaluating the Effectiveness of CCTV in Baltimore, Maryland,” in Spatial Analysis, Modelling and Planning, J. Rocha and J. António Tenedório, Eds., IntechOpen, 2018. doi: 10.5772/intechopen.79076.

I. Kipyatkova and I. Kagirov, “Deep Models for Low-Resourced Speech Recognition: Livvi-Karelian Case,” Mathematics, vol. 11, no. 18, p. 3814, Sep. 2023, doi: 10.3390/math11183814.

A. Singh, N. Kaur, V. Kukreja, V. Kadyan, and M. Kumar, “Computational intelligence in processing of speech acoustics: a survey,” Complex Intell. Syst., vol. 8, no. 3, pp. 2623–2661, Jun. 2022, doi: 10.1007/s40747-022-00665-1.

G. Coro, F. V. Massoli, A. Origlia, and F. Cutugno, “Psycho-acoustics inspired automatic speech recognition,” Computers & Electrical Engineering, vol. 93, p. 107238, Jul. 2021, doi: 10.1016/j.compeleceng.2021.107238.

P. Smit, S. Virpioja, and M. Kurimo, “Advances in subword-based HMM-DNN speech recognition across languages,” Computer Speech & Language, vol. 66, p. 101158, Mar. 2021, doi: 10.1016/j.csl.2020.101158.

C. Lea et al., “From User Perceptions to Technical Improvement: Enabling People Who Stutter to Better Use Speech Recognition,” in Proceedings of the 2023 CHI Conference on Human Factors in Computing Systems, Hamburg Germany: ACM, Apr. 2023, pp. 1–16. doi: 10.1145/3544548.3581224.

L. Zhang et al., “Effects of Semantic Context and Fundamental Frequency Contours on Mandarin Speech Recognition by Second Language Learners,” Front. Psychol., vol. 7, Jun. 2016, doi: 10.3389/fpsyg.2016.00908.

C. M. L. Hughes et al., “Development of a Post-stroke Upper Limb Rehabilitation Wearable Sensor for Use in Sub-Saharan Africa: A Pilot Validation Study,” Front. Bioeng. Biotechnol., vol. 7, p. 322, Nov. 2019, doi: 10.3389/fbioe.2019.00322.

F. Massé, R. R. Gonzenbach, A. Arami, A. Paraschiv-Ionescu, A. R. Luft, and K. Aminian, “Improving activity recognition using a wearable barometric pressure sensor in mobility-impaired stroke patients,” J NeuroEngineering Rehabil, vol. 12, no. 1, p. 72, Dec. 2015, doi: 10.1186/s12984-015-0060-2.

Y. G. Min and K.-H. Jung, “Patterns of pontine strokes mimicking Bell’s palsy,” BMC Neurol, vol. 19, no. 1, p. 208, Dec. 2019, doi: 10.1186/s12883-019-1440-1.

E. Uffelmann et al., “Genome-wide association studies,” Nat Rev Methods Primers, vol. 1, no. 1, p. 59, Aug. 2021, doi: 10.1038/s43586-021-00056-9.

S. A. Alowais et al., “Revolutionizing healthcare: the role of artificial intelligence in clinical practice,” BMC Med Educ, vol. 23, no. 1, p. 689, Sep. 2023, doi: 10.1186/s12909-023-04698-z.

A. Richardson et al., “Mobile Applications for Stroke: A Survey and a Speech Classification Approach:,” in Proceedings of the 5th International Conference on Information and Communication Technologies for Ageing Well and e-Health, Heraklion, Crete, Greece: SCITEPRESS - Science and Technology Publications, 2019, pp. 159–166. doi: 10.5220/0007586901590166.

A. Bonura et al., “Smartphone App in Stroke Management: A Narrative Updated Review,” J Stroke, vol. 24, no. 3, pp. 323–334, Sep. 2022, doi: 10.5853/jos.2022.01410.

J. W. Magnani et al., “Health Literacy and Cardiovascular Disease: Fundamental Relevance to Primary and Secondary Prevention: A Scientific Statement From the American Heart Association,” Circulation, vol. 138, no. 2, Jul. 2018, doi: 10.1161/CIR.0000000000000579.

M. Amoon, T. Altameem, and A. Altameem, “Internet of things sensor assisted security and quality analysis for health care data sets using artificial intelligent based heuristic health management system,” Measurement, vol. 161, p. 107861, Sep. 2020, doi: 10.1016/j.measurement.2020.107861.

S. Akbulut et al., “Designing a Private and Secure Personal Health Records Access Management System: A Solution Based on IOTA Distributed Ledger Technology,” Sensors, vol. 23, no. 11, p. 5174, May 2023, doi: 10.3390/s23115174.

V. G. Motti and S. Berkovsky, “Healthcare Privacy,” in Modern Socio-Technical Perspectives on Privacy, B. P. Knijnenburg, X. Page, P. Wisniewski, H. R. Lipford, N. Proferes, and J. Romano, Eds., Cham: Springer International Publishing, 2022, pp. 203–231. doi: 10.1007/978-3-030-82786-1_10.

C. Chen, S. Ding, and J. Wang, “Digital health for aging populations,” Nat Med, vol. 29, no. 7, pp. 1623–1630, Jul. 2023, doi: 10.1038/s41591-023-02391-8.

N. A. Patel and A. J. Butte, “Characteristics and challenges of the clinical pipeline of digital therapeutics,” npj Digit. Med., vol. 3, no. 1, p. 159, Dec. 2020, doi: 10.1038/s41746-020-00370-8.

Downloads

Published

2023-06-02

How to Cite

Iswanto Suwarno, Rezarta Lalo, Elena Costru-Tasnic, Jan van der Merwe, & Husitha Vanguru. (2023). Sensors and Transducers for Stroke Detection Systematic Literature Review. Sunan Kalijaga Journal of Physics, 5(1), 27–41. Retrieved from https://ejournal.uin-suka.ac.id/saintek/physics/article/view/4242