A Artificial Intellegent algorithms for Tumor Disease Detection: systematic Literature Review
Keywords:
Algorithms, Artificial Intelligence, Tumor DetectionAbstract
A Tumor is a swelling in the body caused by cells that multiply abnormally. Tumors or neoplasms consisting of benign tumors and malignant tumors. Benign tumors can grow larger but do not spread to other body tissues. Malignant tumors are cancers that attack the entire body and are uncontrollable. Comparison between the cell nucleus with the cytoplasm of malignant tumors, while benign tumors are the same as normal cells. Cancer cells can develop rapidly. These cells attack and damage body tissues through the bloodstream and lymph vessels so that they can grow in new places. One way to detect tumor disease is by utilizing Artificial intelligence algorithms for tumor Disease Detection. The purpose of this paper is for the development of Artificial Intellegent algorithms for the detection of tumor Diseases and optimization of Artificial Intellegent algorithms for the detection of tumor Diseases. This research uses systematic literature review by using preferred Reporting Items for Systematic Review (PRISMA). The results of screening and selection of articles obtained 64 potential articles that have met the inclusion criteria. The results showed that with earlier detection, a person can check tumor disease earlier using the help of Artificial intelligence algorithms. The results of research on the development of Artificial intelligence algorithms for detection of tumor Diseases have found Artificial intelligence algorithms that can be used to reduce the risk of tumor disease. Optimization of Artificial Intelegency algorithms for tumor classification, performing new data processing methods such as artificial intelligence can be selected to provide the accuracy of classification and diagnosis, exploration of detection limits is a very important aspect in tumor diagnosis based on SERS, finding improved and suitable nanoparticle substrates so as to significantly improve the original Raman signal.
References
F. Kabagenyi, J. Otiti, J. Namwagala, A. Kamulegeya, and S. Kalungi, “A descriptive study of human papilloma virus in upper aero-digestive squamous cell carcinoma at Uganda cancer institute assessed by P16 immunohistochemistry,” Cancers Head Neck, vol. 5, no. 1, p. 10, Dec. 2020, doi: 10.1186/s41199-020-00057-3.
J. M. Shin, P. Kamarajan, J. C. Fenno, A. H. Rickard, and Y. L. Kapila, “Metabolomics of Head and Neck Cancer: A Mini-Review,” Front. Physiol., vol. 7, Nov. 2016, doi: 10.3389/fphys.2016.00526.
D. E. Johnson, B. Burtness, C. R. Leemans, V. W. Y. Lui, J. E. Bauman, and J. R. Grandis, “Head and neck squamous cell carcinoma,” Nat Rev Dis Primers, vol. 6, no. 1, p. 92, Nov. 2020, doi: 10.1038/s41572-020-00224-3.
H. Sung et al., “Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries,” CA A Cancer J Clinicians, vol. 71, no. 3, pp. 209–249, May 2021, doi: 10.3322/caac.21660.
E. P. Lin et al., “Head and Neck Paragangliomas: An Update on the Molecular Classification, State-of-the-Art Imaging, and Management Recommendations,” Radiology: Imaging Cancer, vol. 4, no. 3, p. e210088, May 2022, doi: 10.1148/rycan.210088.
J. S. Bell et al., “Global incidence of brain and spinal tumors by geographic region and income level based on cancer registry data,” Journal of Clinical Neuroscience, vol. 66, pp. 121–127, Aug. 2019, doi: 10.1016/j.jocn.2019.05.003.
J. M. Gilyoma, P. F. Rambau, N. Masalu, N. M. Kayange, and P. L. Chalya, “Head and neck cancers: a clinico-pathological profile and management challenges in a resource-limited setting,” BMC Res Notes, vol. 8, no. 1, p. 772, Dec. 2015, doi: 10.1186/s13104-015-1773-9.
A. Barsouk, J. S. Aluru, P. Rawla, K. Saginala, and A. Barsouk, “Epidemiology, Risk Factors, and Prevention of Head and Neck Squamous Cell Carcinoma,” Medical Sciences, vol. 11, no. 2, p. 42, Jun. 2023, doi: 10.3390/medsci11020042.
Z. Chen, “Collaboration among recruiters and artificial intelligence: removing human prejudices in employment,” Cogn Tech Work, vol. 25, no. 1, pp. 135–149, Feb. 2023, doi: 10.1007/s10111-022-00716-0.
Y. Jiang, X. Li, H. Luo, S. Yin, and O. Kaynak, “Quo vadis artificial intelligence?,” Discov Artif Intell, vol. 2, no. 1, p. 4, Mar. 2022, doi: 10.1007/s44163-022-00022-8.
S. F. Ahmad et al., “Impact of artificial intelligence on human loss in decision making, laziness and safety in education,” Humanit Soc Sci Commun, vol. 10, no. 1, p. 311, Jun. 2023, doi: 10.1057/s41599-023-01787-8.
R. Pishghadam, M. Faribi, M. Kolahi Ahari, F. Shadloo, M. J. Gholami, and S. Shayesteh, “Intelligence, emotional intelligence, and emo-sensory intelligence: Which one is a better predictor of university students’ academic success?,” Front. Psychol., vol. 13, p. 995988, Aug. 2022, doi: 10.3389/fpsyg.2022.995988.
A. Eric Msughter, A. Ogechi Perpetua, and A. Lillian Itiafa, “Artificial Intelligence and the Media: Revisiting Digital Dichotomy Theory,” in Information Systems Management, R. Raja and H. Raja, Eds., IntechOpen, 2023. doi: 10.5772/intechopen.108042.
Y. Zhai, J. Yan, H. Zhang, and W. Lu, “Tracing the evolution of AI: conceptualization of artificial intelligence in mass media discourse,” IDD, vol. 48, no. 3, pp. 137–149, Apr. 2020, doi: 10.1108/IDD-01-2020-0007.
M.-F. de-Lima-Santos and W. Ceron, “Artificial Intelligence in News Media: Current Perceptions and Future Outlook,” Journalism and Media, vol. 3, no. 1, pp. 13–26, Dec. 2021, doi: 10.3390/journalmedia3010002.
O. Ali, W. Abdelbaki, A. Shrestha, E. Elbasi, M. A. A. Alryalat, and Y. K. Dwivedi, “A systematic literature review of artificial intelligence in the healthcare sector: Benefits, challenges, methodologies, and functionalities,” Journal of Innovation & Knowledge, vol. 8, no. 1, p. 100333, Jan. 2023, doi: 10.1016/j.jik.2023.100333.
Z. Chang et al., “Application of artificial intelligence in COVID-19 medical area: a systematic review,” J Thorac Dis, vol. 13, no. 12, pp. 7034–7053, Dec. 2021, doi: 10.21037/jtd-21-747.
M. Sufyan, Z. Shokat, and U. A. Ashfaq, “Artificial intelligence in cancer diagnosis and therapy: Current status and future perspective,” Computers in Biology and Medicine, vol. 165, p. 107356, Oct. 2023, doi: 10.1016/j.compbiomed.2023.107356.
E. Karger and M. Kureljusic, “Artificial Intelligence for Cancer Detection—A Bibliometric Analysis and Avenues for Future Research,” Current Oncology, vol. 30, no. 2, pp. 1626–1647, Jan. 2023, doi: 10.3390/curroncol30020125.
M. Ullah, A. Akbar, and G. Yannarelli, “Applications of artificial intelligence in, early detection of cancer, clinical diagnosis and personalized medicine,” AIC, vol. 1, no. 2, pp. 39–44, Aug. 2020, doi: 10.35713/aic.v1.i2.39.
M. Liu et al., “The value of artificial intelligence in the diagnosis of lung cancer: A systematic review and meta-analysis,” PLoS ONE, vol. 18, no. 3, p. e0273445, Mar. 2023, doi: 10.1371/journal.pone.0273445.
M. Sugimoto, S. Hikichi, M. Takada, and M. Toi, “Machine learning techniques for breast cancer diagnosis and treatment: a narrative review,” Ann Breast Surg, vol. 7, pp. 7–7, Mar. 2023, doi: 10.21037/abs-21-63.
J.-R. Lin et al., “High-plex immunofluorescence imaging and traditional histology of the same tissue section for discovering image-based biomarkers,” Nat Cancer, vol. 4, no. 7, pp. 1036–1052, Jun. 2023, doi: 10.1038/s43018-023-00576-1.
N. Ghaffar Nia, E. Kaplanoglu, and A. Nasab, “Evaluation of artificial intelligence techniques in disease diagnosis and prediction,” Discov Artif Intell, vol. 3, no. 1, p. 5, Jan. 2023, doi: 10.1007/s44163-023-00049-5.
J.-Y. Wang et al., “Stratified assessment of an FDA-cleared deep learning algorithm for automated detection and contouring of metastatic brain tumors in stereotactic radiosurgery,” Radiat Oncol, vol. 18, no. 1, p. 61, Apr. 2023, doi: 10.1186/s13014-023-02246-z.
G. A. Van Norman, “Drugs and Devices,” JACC: Basic to Translational Science, vol. 1, no. 5, pp. 399–412, Aug. 2016, doi: 10.1016/j.jacbts.2016.06.003.
C. Wollenhaupt, T. Sudhop, and W. Knoess, “A Systematic Database Approach to Identify Companion Diagnostic Testing in Clinical Trials under the New In Vitro Diagnostic Medical Devices Regulation,” Diagnostics, vol. 13, no. 12, p. 2037, Jun. 2023, doi: 10.3390/diagnostics13122037.
L. K. Vora, A. D. Gholap, K. Jetha, R. R. S. Thakur, H. K. Solanki, and V. P. Chavda, “Artificial Intelligence in Pharmaceutical Technology and Drug Delivery Design,” Pharmaceutics, vol. 15, no. 7, p. 1916, Jul. 2023, doi: 10.3390/pharmaceutics15071916.
V. Valla, S. Alzabin, A. Koukoura, A. Lewis, A. A. Nielsen, and E. Vassiliadis, “Companion Diagnostics: State of the Art and New Regulations,” Biomark�Insights, vol. 16, p. 117727192110477, Jan. 2021, doi: 10.1177/11772719211047763.
G. H. Javitt and E. R. Vollebregt, “Regulation of Molecular Diagnostics,” Annu. Rev. Genom. Hum. Genet., vol. 23, no. 1, pp. 653–673, Aug. 2022, doi: 10.1146/annurev-genom-121521-010416.
M. Mejza and E. Małecka-Wojciesko, “Diagnosis and Management of Barrett’s Esophagus,” JCM, vol. 12, no. 6, p. 2141, Mar. 2023, doi: 10.3390/jcm12062141.
B. Merchán Gómez, L. Milla Collado, and M. Rodríguez, “Artificial intelligence in esophageal cancer diagnosis and treatment: where are we now?—a narrative review,” Ann Transl Med, vol. 11, no. 10, pp. 353–353, Aug. 2023, doi: 10.21037/atm-22-3977.
Y. Tokai, T. Yoshio, and J. Fujisaki, “Development of artificial intelligence for the detection and staging of esophageal cancer,” Ann Esophagus, vol. 6, pp. 3–3, Mar. 2023, doi: 10.21037/aoe-2020-33.
R. Pannala et al., “Artificial intelligence in gastrointestinal endoscopy,” VideoGIE, vol. 5, no. 12, pp. 598–613, Dec. 2020, doi: 10.1016/j.vgie.2020.08.013.
B. Zhang, H. Shi, and H. Wang, “Machine Learning and AI in Cancer Prognosis, Prediction, and Treatment Selection: A Critical Approach,” JMDH, vol. Volume 16, pp. 1779–1791, Jun. 2023, doi: 10.2147/JMDH.S410301.
M. J. Iqbal et al., “Clinical applications of artificial intelligence and machine learning in cancer diagnosis: looking into the future,” Cancer Cell Int, vol. 21, no. 1, p. 270, May 2021, doi: 10.1186/s12935-021-01981-1.
M. Alieva, J. Van Rheenen, and M. L. D. Broekman, “Potential impact of invasive surgical procedures on primary tumor growth and metastasis,” Clin Exp Metastasis, vol. 35, no. 4, pp. 319–331, Apr. 2018, doi: 10.1007/s10585-018-9896-8.
M. Van Vliet, M. Kliffen, G. P. Krestin, and C. F. Van Dijke, “Soft tissue sarcomas at a glance: clinical, histological, and MR imaging features of malignant extremity soft tissue tumors,” Eur Radiol, vol. 19, no. 6, pp. 1499–1511, Jun. 2009, doi: 10.1007/s00330-008-1292-3.
N. Sajko, S. Murphy, and A. Tran, “Undifferentiated epithelioid sarcoma presenting as a fever of unknown origin: a case report,” J Med Case Reports, vol. 13, no. 1, p. 24, Dec. 2019, doi: 10.1186/s13256-018-1951-1.
E. Rassy et al., “Sarcoma of unknown primary: myth or reality?,” J Egypt Natl Canc Inst, vol. 34, no. 1, p. 27, Dec. 2022, doi: 10.1186/s43046-022-00128-1.
X. Liu et al., “Predicting Cancer Tissue-of-Origin by a Machine Learning Method Using DNA Somatic Mutation Data,” Front. Genet., vol. 11, p. 674, Jul. 2020, doi: 10.3389/fgene.2020.00674.
K. Rahbar et al., “Differentiation of Malignant and Benign Cardiac Tumors Using 18 F-FDG PET/CT,” J Nucl Med, vol. 53, no. 6, pp. 856–863, Jun. 2012, doi: 10.2967/jnumed.111.095364.
F. Yan, Z. Song, M. Du, and A. L. Klibanov, “Ultrasound molecular imaging for differentiation of benign and malignant tumors in patients,” Quant. Imaging Med. Surg, vol. 8, no. 11, pp. 1083–1083, Dec. 2018, doi: 10.21037/qims.2018.12.08.
A. Patel, “Benign vs Malignant Tumors,” JAMA Oncol, vol. 6, no. 9, p. 1488, Sep. 2020, doi: 10.1001/jamaoncol.2020.2592.
T. T. Tang, J. A. Zawaski, K. N. Francis, A. A. Qutub, and M. W. Gaber, “Image-based Classification of Tumor Type and Growth Rate using Machine Learning: a preclinical study,” Sci Rep, vol. 9, no. 1, p. 12529, Aug. 2019, doi: 10.1038/s41598-019-48738-5.
M. Valet and P. Narbonne, “Formation of benign tumors by stem cell deregulation,” PLoS Genet, vol. 18, no. 10, p. e1010434, Oct. 2022, doi: 10.1371/journal.pgen.1010434.
R. Baghban et al., “Tumor microenvironment complexity and therapeutic implications at a glance,” Cell Commun Signal, vol. 18, no. 1, p. 59, Dec. 2020, doi: 10.1186/s12964-020-0530-4.
K. D. Miller et al., “Brain and other central nervous system tumor statistics, 2021,” CA A Cancer J Clinicians, vol. 71, no. 5, pp. 381–406, Sep. 2021, doi: 10.3322/caac.21693.
M.-A. Majérus, “The cause of cancer: The unifying theory,” Advances in Cancer Biology - Metastasis, vol. 4, p. 100034, Jul. 2022, doi: 10.1016/j.adcanc.2022.100034.
A. I. Riggio, K. E. Varley, and A. L. Welm, “The lingering mysteries of metastatic recurrence in breast cancer,” Br J Cancer, vol. 124, no. 1, pp. 13–26, Jan. 2021, doi: 10.1038/s41416-020-01161-4.
A. Nishiyama and M. Nakanishi, “Navigating the DNA methylation landscape of cancer,” Trends in Genetics, vol. 37, no. 11, pp. 1012–1027, Nov. 2021, doi: 10.1016/j.tig.2021.05.002.
M. I. Carr and S. N. Jones, “Regulation of the Mdm2-p53 signaling axis in the DNA damage response and tumorigenesis,” Transl. Cancer Res., vol. 5, no. 6, pp. 707–724, Dec. 2016, doi: 10.21037/tcr.2016.11.75.
D. Hanahan and R. A. Weinberg, “The Hallmarks of Cancer,” Cell, vol. 100, no. 1, pp. 57–70, Jan. 2000, doi: 10.1016/S0092-8674(00)81683-9.
H. E. Marei et al., “p53 signaling in cancer progression and therapy,” Cancer Cell Int, vol. 21, no. 1, p. 703, Dec. 2021, doi: 10.1186/s12935-021-02396-8.
S. Amarya, K. Singh, and M. Sabharwal, “Changes during aging and their association with malnutrition,” Journal of Clinical Gerontology and Geriatrics, vol. 6, no. 3, pp. 78–84, Sep. 2015, doi: 10.1016/j.jcgg.2015.05.003.
S. R. El-Zayat, H. Sibaii, and K. A. El-Shamy, “Physiological process of fat loss,” Bull Natl Res Cent, vol. 43, no. 1, p. 208, Dec. 2019, doi: 10.1186/s42269-019-0238-z.
A. M. Valdes, J. Walter, E. Segal, and T. D. Spector, “Role of the gut microbiota in nutrition and health,” BMJ, p. k2179, Jun. 2018, doi: 10.1136/bmj.k2179.
N. Casanova, K. Beaulieu, G. Finlayson, and M. Hopkins, “Metabolic adaptations during negative energy balance and their potential impact on appetite and food intake,” Proc. Nutr. Soc., vol. 78, no. 3, pp. 279–289, Aug. 2019, doi: 10.1017/S0029665118002811.
A. Gupta, R. Sedhom, and M. S. Beg, “Ascites, or Fluid in the Belly, in Patients With Cancer,” JAMA Oncol, vol. 6, no. 2, p. 308, Feb. 2020, doi: 10.1001/jamaoncol.2019.5409.
J. Briffa, E. Sinagra, and R. Blundell, “Heavy metal pollution in the environment and their toxicological effects on humans,” Heliyon, vol. 6, no. 9, p. e04691, Sep. 2020, doi: 10.1016/j.heliyon.2020.e04691.
A. Csibi and J. Blenis, “Appetite for destruction: the inhibition of glycolysis as a therapy for tuberous sclerosis complex-related tumors,” BMC Biol, vol. 9, no. 1, p. 69, Dec. 2011, doi: 10.1186/1741-7007-9-69.
N. Kedia-Mehta and D. K. Finlay, “Competition for nutrients and its role in controlling immune responses,” Nat Commun, vol. 10, no. 1, p. 2123, May 2019, doi: 10.1038/s41467-019-10015-4.
C. L. Rock et al., “American Cancer Society nutrition and physical activity guideline for cancer survivors,” CA A Cancer J Clinicians, vol. 72, no. 3, pp. 230–262, May 2022, doi: 10.3322/caac.21719.
T. Fiolet et al., “Consumption of ultra-processed foods and cancer risk: results from NutriNet-Santé prospective cohort,” BMJ, p. k322, Feb. 2018, doi: 10.1136/bmj.k322.
R. Hao and H. Guo, “Anorexia, undernutrition, weight loss, sarcopenia, and cachexia of aging,” Eur Rev Aging Phys Act, vol. 9, no. 2, pp. 119–127, Oct. 2012, doi: 10.1007/s11556-012-0103-7.
M. E. J. Lean and D. Malkova, “Altered gut and adipose tissue hormones in overweight and obese individuals: cause or consequence?,” Int J Obes, vol. 40, no. 4, pp. 622–632, Apr. 2016, doi: 10.1038/ijo.2015.220.
N. Del Piccolo et al., “Tumor-on-chip modeling of organ-specific cancer and metastasis,” Advanced Drug Delivery Reviews, vol. 175, p. 113798, Aug. 2021, doi: 10.1016/j.addr.2021.05.008.
T. T. Lah, M. Novak, and B. Breznik, “Brain malignancies: Glioblastoma and brain metastases,” Seminars in Cancer Biology, vol. 60, pp. 262–273, Feb. 2020, doi: 10.1016/j.semcancer.2019.10.010.
E. Farahani et al., “Cell adhesion molecules and their relation to (cancer) cell stemness,” Carcinogenesis, vol. 35, no. 4, pp. 747–759, Apr. 2014, doi: 10.1093/carcin/bgu045.
Y. Luan et al., “A panel of seven protein tumour markers for effective and affordable multi-cancer early detection by artificial intelligence: a large-scale and multicentre case–control study,” eClinicalMedicine, vol. 61, p. 102041, Jul. 2023, doi: 10.1016/j.eclinm.2023.102041.
S. N. Lone et al., “Liquid biopsy: a step closer to transform diagnosis, prognosis and future of cancer treatments,” Mol Cancer, vol. 21, no. 1, p. 79, Mar. 2022, doi: 10.1186/s12943-022-01543-7.
O. Oren, B. J. Gersh, and D. L. Bhatt, “Artificial intelligence in medical imaging: switching from radiographic pathological data to clinically meaningful endpoints,” The Lancet Digital Health, vol. 2, no. 9, pp. e486–e488, Sep. 2020, doi: 10.1016/S2589-7500(20)30160-6.
M. Jiang et al., “Detection and clinical significance of circulating tumor cells in colorectal cancer,” Biomark Res, vol. 9, no. 1, p. 85, Nov. 2021, doi: 10.1186/s40364-021-00326-4.
S. Krishna, S. S. Suganthi, A. Bhavsar, J. Yesodharan, and S. Krishnamoorthy, “An interpretable decision-support model for breast cancer diagnosis using histopathology images,” Journal of Pathology Informatics, vol. 14, p. 100319, 2023, doi: 10.1016/j.jpi.2023.100319.
Y. Qi, Y. Liu, and J. Luo, “Recent application of Raman spectroscopy in tumor diagnosis: from conventional methods to artificial intelligence fusion,” PhotoniX, vol. 4, no. 1, p. 22, Jul. 2023, doi: 10.1186/s43074-023-00098-0.
K. Hanna, E. Krzoska, A. M. Shaaban, D. Muirhead, R. Abu-Eid, and V. Speirs, “Raman spectroscopy: current applications in breast cancer diagnosis, challenges and future prospects,” Br J Cancer, vol. 126, no. 8, pp. 1125–1139, May 2022, doi: 10.1038/s41416-021-01659-5.
D. V. Garcia et al., “Analysis of Raman spectroscopy data with algorithms based on paraconsistent logic for characterization of skin cancer lesions,” Vibrational Spectroscopy, vol. 103, p. 102929, Jul. 2019, doi: 10.1016/j.vibspec.2019.102929.
F. Yin et al., “A novel detection technology for early gastric cancer based on Raman spectroscopy,” Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, vol. 292, p. 122422, May 2023, doi: 10.1016/j.saa.2023.122422.
G. W. Auner et al., “Applications of Raman spectroscopy in cancer diagnosis,” Cancer Metastasis Rev, vol. 37, no. 4, pp. 691–717, Dec. 2018, doi: 10.1007/s10555-018-9770-9.
M. Sharma et al., “Identification of Healthy Tissue from Malignant Tissue in Surgical Margin Using Raman Spectroscopy in Oral Cancer Surgeries,” Biomedicines, vol. 11, no. 7, p. 1984, Jul. 2023, doi: 10.3390/biomedicines11071984.
F. E. R. Woods, C. A. Jenkins, R. A. Jenkins, S. Chandler, D. A. Harris, and P. R. Dunstan, “Optimised Pre-Processing of Raman Spectra for Colorectal Cancer Detection Using High-Performance Computing,” Appl Spectrosc, vol. 76, no. 4, pp. 496–507, Apr. 2022, doi: 10.1177/00037028221088320.
S. Rostamzadeh, A. Abouhossein, M. Saremi, F. Taheri, M. Ebrahimian, and S. Vosoughi, “A comparative investigation of machine learning algorithms for predicting safety signs comprehension based on socio-demographic factors and cognitive sign features,” Sci Rep, vol. 13, no. 1, p. 10843, Jul. 2023, doi: 10.1038/s41598-023-38065-1.
F. Yu, C. Wei, P. Deng, T. Peng, and X. Hu, “Deep exploration of random forest model boosts the interpretability of machine learning studies of complicated immune responses and lung burden of nanoparticles,” Sci. Adv., vol. 7, no. 22, p. eabf4130, May 2021, doi: 10.1126/sciadv.abf4130.
P. Thanh Noi and M. Kappas, “Comparison of Random Forest, k-Nearest Neighbor, and Support Vector Machine Classifiers for Land Cover Classification Using Sentinel-2 Imagery,” Sensors, vol. 18, no. 2, p. 18, Dec. 2017, doi: 10.3390/s18010018.
A. Irshad Khan et al., “Prediction of breast cancer based on computer vision and artificial intelligence techniques,” Measurement, vol. 218, p. 113230, Aug. 2023, doi: 10.1016/j.measurement.2023.113230.
L. K. Singh, M. Khanna, and R. Singh, “Artificial intelligence based medical decision support system for early and accurate breast cancer prediction,” Advances in Engineering Software, vol. 175, p. 103338, Jan. 2023, doi: 10.1016/j.advengsoft.2022.103338.
Z. Quan and L. Pu, “An improved accurate classification method for online education resources based on support vector machine (SVM): Algorithm and experiment,” Educ Inf Technol, vol. 28, no. 7, pp. 8097–8111, Jul. 2023, doi: 10.1007/s10639-022-11514-6.
W. Dawuti et al., “Urine surface-enhanced Raman spectroscopy combined with SVM algorithm for rapid diagnosis of liver cirrhosis and hepatocellular carcinoma,” Photodiagnosis and Photodynamic Therapy, vol. 38, p. 102811, Jun. 2022, doi: 10.1016/j.pdpdt.2022.102811.
X. Fang, S. Li, Q. Fu, P. Wang, X. Wu, and Y. Zhang, “Label-free identification of lung cancer cells from blood cells based on surface-enhanced Raman scattering and support vector machine,” Optik, vol. 248, p. 168157, Dec. 2021, doi: 10.1016/j.ijleo.2021.168157.
J. Lei et al., “Label-free surface-enhanced Raman spectroscopy for diagnosis and analysis of serum samples with different types lung cancer,” Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, vol. 261, p. 120021, Nov. 2021, doi: 10.1016/j.saa.2021.120021.
M. Kriegsmann et al., “Deep Learning for the Classification of Small-Cell and Non-Small-Cell Lung Cancer,” Cancers, vol. 12, no. 6, p. 1604, Jun. 2020, doi: 10.3390/cancers12061604.
M. Zheng, “Classification and Pathology of Lung Cancer,” Surgical Oncology Clinics of North America, vol. 25, no. 3, pp. 447–468, Jul. 2016, doi: 10.1016/j.soc.2016.02.003.
H. Zhou, L. Xu, Z. Ren, J. Zhu, and C. Lee, “Machine learning-augmented surface-enhanced spectroscopy toward next-generation molecular diagnostics,” Nanoscale Adv., vol. 5, no. 3, pp. 538–570, 2023, doi: 10.1039/D2NA00608A.
L. A. McAlarnen, P. Gupta, R. Singh, S. Pradeep, and P. Chaluvally-Raghavan, “Extracellular vesicle contents as non-invasive biomarkers in ovarian malignancies,” Molecular Therapy - Oncolytics, vol. 26, pp. 347–359, Sep. 2022, doi: 10.1016/j.omto.2022.08.005.
A.-L. Doebley et al., “A framework for clinical cancer subtyping from nucleosome profiling of cell-free DNA,” Nat Commun, vol. 13, no. 1, p. 7475, Dec. 2022, doi: 10.1038/s41467-022-35076-w.
S. N. Lone et al., “Liquid biopsy: a step closer to transform diagnosis, prognosis and future of cancer treatments,” Mol Cancer, vol. 21, no. 1, p. 79, Mar. 2022, doi: 10.1186/s12943-022-01543-7.
E. R. Malone, M. Oliva, P. J. B. Sabatini, T. L. Stockley, and L. L. Siu, “Molecular profiling for precision cancer therapies,” Genome Med, vol. 12, no. 1, p. 8, Dec. 2020, doi: 10.1186/s13073-019-0703-1.
L. Shi, Y. Li, and Z. Li, “Early cancer detection by SERS spectroscopy and machine learning,” Light Sci Appl, vol. 12, no. 1, p. 234, Sep. 2023, doi: 10.1038/s41377-023-01271-7.
I. Kononenko, “Machine learning for medical diagnosis: history, state of the art and perspective,” Artificial Intelligence in Medicine, vol. 23, no. 1, pp. 89–109, Aug. 2001, doi: 10.1016/S0933-3657(01)00077-X.
D. Henckert et al., “Attitudes of Anesthesiologists toward Artificial Intelligence in Anesthesia: A Multicenter, Mixed Qualitative–Quantitative Study,” JCM, vol. 12, no. 6, p. 2096, Mar. 2023, doi: 10.3390/jcm12062096.
B. Wahl, A. Cossy-Gantner, S. Germann, and N. R. Schwalbe, “Artificial intelligence (AI) and global health: how can AI contribute to health in resource-poor settings?,” BMJ Glob Health, vol. 3, no. 4, p. e000798, Aug. 2018, doi: 10.1136/bmjgh-2018-000798.
Y. Tadavarthi et al., “The State of Radiology AI: Considerations for Purchase Decisions and Current Market Offerings,” Radiology: Artificial Intelligence, vol. 2, no. 6, p. e200004, Nov. 2020, doi: 10.1148/ryai.2020200004.
C. Qiu et al., “Highly sensitive surface-enhanced Raman scattering (SERS) imaging for phenotypic diagnosis and therapeutic evaluation of breast cancer,” Chemical Engineering Journal, vol. 459, p. 141502, Mar. 2023, doi: 10.1016/j.cej.2023.141502.
H. Qian et al., “Diagnosis of urogenital cancer combining deep learning algorithms and surface-enhanced Raman spectroscopy based on small extracellular vesicles,” Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, vol. 281, p. 121603, Nov. 2022, doi: 10.1016/j.saa.2022.121603.
H. Shin et al., “Single test-based diagnosis of multiple cancer types using Exosome-SERS-AI for early stage cancers,” Nat Commun, vol. 14, no. 1, p. 1644, Mar. 2023, doi: 10.1038/s41467-023-37403-1.
A. M. Al-Zoghby, E. M. K. Al-Awadly, A. Moawad, N. Yehia, and A. I. Ebada, “Dual Deep CNN for Tumor Brain Classification,” Diagnostics, vol. 13, no. 12, p. 2050, Jun. 2023, doi: 10.3390/diagnostics13122050.
E. Nazari, M. Aghemiri, A. Avan, A. Mehrabian, and H. Tabesh, “Machine learning approaches for classification of colorectal cancer with and without feature selection method on microarray data,” Gene Reports, vol. 25, p. 101419, Dec. 2021, doi: 10.1016/j.genrep.2021.101419.
A. U. Haq, J. P. Li, S. Khan, M. A. Alshara, R. M. Alotaibi, and C. Mawuli, “DACBT: deep learning approach for classification of brain tumors using MRI data in IoT healthcare environment,” Sci Rep, vol. 12, no. 1, p. 15331, Sep. 2022, doi: 10.1038/s41598-022-19465-1.
T.-V. Dang, G.-H. Yu, and J.-Y. Kim, “Revisiting Low-Resolution Images Retrieval with Attention Mechanism and Contrastive Learning,” Applied Sciences, vol. 11, no. 15, p. 6783, Jul. 2021, doi: 10.3390/app11156783.
H. Park et al., “Deep learning enables reference-free isotropic super-resolution for volumetric fluorescence microscopy,” Nat Commun, vol. 13, no. 1, p. 3297, Jun. 2022, doi: 10.1038/s41467-022-30949-6.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Muhammad Hafid Alkarim, Iswanto Suwarno
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.