Preparation of Activated Carbon from Coffee Grounds as a Supercapacitor Electrode
Pembuatan Karbon Aktif dari Ampas Kopi sebagai Elektroda Superkapasitor
DOI:
https://doi.org/10.14421/physics.v6i2.5155Keywords:
Activated Carbon, Carbonization Temperature, Activator, SupercapacitorAbstract
The growing demand for sustainable energy storage solutions has spurred interest in supercapacitors, with biomass-derived activated carbon emerging as a promising electrode material. This study investigates the fabrication and performance of activated carbon from spent coffee grounds for application in supercapacitors. Carbonization was carried out at 300°C, 500°C, and 700°C, followed by chemical activation using HCl, KOH, and ZnCl₂. The resulting activated carbons were characterized to determine their physicochemical properties. Optimal activated carbon was obtained at 700°C with KOH activation, yielding 84.75% fixed carbon and conforming to SNI 06-3730-1995 standards. Supercapacitor performance testing revealed that the best results were achieved using electrodes prepared from carbon obtained at 300°C and activated with ZnCl₂, yielding a voltage of 352.9 mV and a capacitance of 465.58 μF after a 1-minute charge. These findings suggest that spent coffee grounds are a viable source of electrode material for efficient, low-voltage supercapacitors.
References
E. E. Miller, Y. Hua, and F. H. Tezel, "Materials for energy storage: Review of electrode materials and methods of increasing capacitance for supercapacitors," J. Energy Storage, vol. 20, pp. 30–40, 2018.
A. S. Morris and R. Langari, Measurement and Instrumentation: Theory and Application, Oxford: Elsevier, 2012.
F. Aman, Mariana, Mahidin, and F. Maulana, "Penyerapan limbah cair amonia menggunakan arang aktif ampas kopi," J. Litbang Industri, vol. 8, no. 1, pp. 47–52, 2018.
T. Ariyanto, I. Prasetyo, and Rochmadi, "Pengaruh struktur pori terhadap kapasitansi elektroda superkapasitor yang dibuat dari karbon nanopori," Reaktor, vol. 14, no. 1, pp. 25–32, Apr. 2012.
H. Aziz, O. N. Tetra, A. Admin, and Y. A. Perdana, "Performance karbon aktif dari limbah cangkang kelapa sawit sebagai bahan elektroda superkapasitor," J. Zarah, vol. 5, no. 2, pp. 1–6, 2017.
N. S. Caetano, V. F. Silva, and T. M. Mata, "Valorization of coffee grounds for biodiesel production," Chem. Eng. Trans., vol. 26, p. 6, 2012.
A. Martin, J. Swarbick, and A. Cammareta, Farmasi Fisik 2: Dasar-Dasar Farmasi Fisik dalam Ilmu Farmasetik, 3rd ed., Jakarta: UI Press, 1993.
K. Natalia and E. Taer, "Pengaruh suhu aktivasi terhadap sifat fisis dan elektrokimia elektroda superkapasitor dari limbah daun akasia (Acacia mangium Wild)," J. Komun. Fis. Indones., vol. 16, no. 2, pp. 81–86, Oct. 2019.
R. Dewi, N. Azahari, and I. Nofriadi, "Aktivasi karbon dari kulit pinang dengan menggunakan aktivator kimia KOH," J. Teknol. Kimia Unimal, vol. 9, no. 2, pp. 12–22, Nov. 2020.
E. Erawati and A. Fernando, "Pengaruh jenis aktivator dan ukuran karbon aktif terhadap pembuatan adsorben dari serbuk gergaji kayu sengon (Paraserianthes falcataria)," J. Integr. Proses, vol. 7, no. 2, pp. 58–66, Dec. 2018.
L. V. Khu and T. L. T. Thu, "Activated carbon derived from rice husk by NaOH activation and its application in supercapacitor," Prog. Nat. Sci. Mater. Int., vol. 24, pp. 191–198, 2014.
H. Kristianto, "Review: Sintesis karbon aktif dengan menggunakan aktivasi kimia ZnCl2," J. Integr. Proses, vol. 6, no. 3, pp. 104–111, Mar. 2017.
N. Kurniawati and T. Surawan, "Superkapasitor dari karbon aktif limbah daun teh sebagai bahan elektroda," J. Teknol., vol. 8, no. 1, pp. 76–83, Nov. 2020.
L. E. Laos, Masturi, and I. Yulianti, "Pengaruh suhu aktivasi terhadap daya serap karbon aktif kulit kemiri," in Proc. Semin. Nas. Fisika, vol. 5, pp. 135–140, 2016.
B. Mardwianta, "Pembangkitan energi listrik pada baterai udara dengan bahan karbon aktif dan elektrolit air laut," SENATIK, vol. 3, Dec. 2017.
H. Marsh and R. R. Francisco, Activated Carbon, Ukraina: Elsevier Sci. Technol. Books, 2006.
V. Negara and Astuti, "Pengaruh temperatur sintering karbon aktif berbasis tempurung kemiri terhadap sifat listrik anoda baterai litium," Fisika Undan, vol. 4, no. 2, pp. 178–184, 2015.
A. Nurrahman, E. Permana, D. R. Gusti, and I. Lestari, "Pengaruh konsentrasi aktivator terhadap kualitas karbon aktif dari batubara lignit," J. Daur Lingkungan, vol. 4, no. 2, pp. 44–53, Aug. 2021.
A. Prayogatama, Nuryoto, and T. Kurniawan, "Modifikasi karbon aktif dengan aktivasi kimia dan fisika menjadi elektroda superkapasitor," J. Sains Teknol., vol. 11, no. 1, pp. 47–58, Mar. 2022.
E. Frackowiak, "Supercapacitors based on carbon materials and ionic liquids," J. Braz. Chem. Soc., vol. 17, no. 6, pp. 1074–1082, 2006.
A. Imawati and Adhitiyawarman, "Kapasitas adsorpsi maksimum ion Pb(II) oleh karbon aktif ampas kopi teraktivasi HCl dan H3PO4," J. Kim. Khatulistiwa, vol. 4, no. 2, pp. 50–61, 2015.
K. Zhang, Y. Liu, and M. Zhang, "The porous carbon derived from water hyacinth with well-designed hierarchical structure for supercapacitors," J. Power Sources, vol. 366, pp. 270–277, 2017.
M. Verayana, P. Mardjan, and I. Hendri, "Pengaruh aktivator HCl dan H3PO4 terhadap karakteristik (morfologi pori) arang aktif tempurung kelapa serta uji adsorpsi pada logam timbal (Pb)," J. Entropi, vol. 13, no. 1, pp. 67–75, Feb. 2018.
M. Rossi, "Hydrogel-polymer electrolytes based on polyvinyl alcohol and hydroxyethylcellulose for supercapacitor applications," Int. J. Electrochem. Sci., vol. 9, pp. 4251–4256, 2014.
Y. Sarasati, I. Thohari, and B. Sunarko, "Perbedaan ketebalan filter arang aktif ampas kopi dalam menurunkan kadar besi (Fe) pada air bersih," J. Penelit. Kesehat. Suara Forikes, vol. 9, no. 4, pp. 231–237, Oct. 2018.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Pratama Putra

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.




