The Effectiveness of Clarke Wright and Sequential Insertion Algorithm in Distribution Routing Aqua

Main Article Content

Ayu Hariati
Nurul Huda Prasetya
Hendra Cipta

Abstract

With the Multiple Trips condition, the results obtained for the optimal distance route that starts and stops at PT. Tirta Investama Medan with Clarke Wright Algorithm at t = 1 is 22 km and at t = t + 1 is 15.2 km. While the optimal travel distance route with the Sequential Insertion Algorithm at t = 1 is 15.05 km, and at t = t + 1 is 22.9 km. Clarke Wright Algorithm looks for an optimal solution to get the best route, while Sequential Insertion Algorithm has an excess in the election of a customer by considering customer position with available insertion track location until all customer have been assigned. The Clarke Wright Algorithm obtained a total distance of 37.2 km. In comparison, the Sequential Insertion Algorithm solution obtained a total distance of 37.95 km. It can be concluded that the route formed using the Clarke Wright Algorithm in this case is more effective than using the Sequential Insertion Algorithm.

Downloads

Download data is not yet available.

Article Details

How to Cite
Hariati, A., Prasetya, N. H., & Cipta, H. (2021). The Effectiveness of Clarke Wright and Sequential Insertion Algorithm in Distribution Routing Aqua. Quadratic: Journal of Innovation and Technology in Mathematics and Mathematics Education, 1(1), 15–22. https://doi.org/10.14421/quadratic.2021.011-03
Section
Articles

References

B. D. Dewantoro, H. Adianto, and A. Imran, “Penentuan rute distribusi air mineral menggunakan metode Clarke-Wright algorithm dan sequential insertion,” Reka Integra: Jurnal Online Institut Teknologi Nasional, vol. 1, no.2, pp. 150-158, 2013.

S. Chopra, Supply Chain Management: Strategy, Planning and Operation, New Jersey, NJ: Pearson Education, Fifth Edition, 2007.

I. S. Kurniawan, S. Susanty, and H. Adianto, “Usulan rute pendistribusian air mineral dalam kemasan menggunakan metode nearest neighbour dan Clarke & Wright savings,” Reka Integra: Jurnal Online Institut Teknologi Nasional, vol. 1, no.4, pp. 125-136, 2014.

D. B. Paillin and E. Wattimena, “Penerapan algoritma sequential insertion dalam pendistribusian BBM di kawasan timur Indonesia (studi kasus pada PT. Pertamina UPMS VIII Terminal Transit Wayame-Ambon),” ARIKA: Jurnal Teknik Universitas Pattimura, vol. 9, no.1, pp. 53-62, 2015.

P. Toth and D. Vigo, “An overview of vehicle routing problems. In Handbook of The Vehicle Routing Problem,” SIAM: Society for Industrial and Applied Mathematics, pp. 1-26, 2002, doi: 10.1137/1.9780898718515.ch1.

L. Octora, A. Imran, and S. Susanty, “Pembentukan rute distribusi menggunakan algoritma Clarke & Wright savings dan algoritma sequential insertion”, Reka Integra: Jurnal Online Institut Teknologi Nasional, vol. 2, no.2, pp. 1-11, 2014.

R. Wahyu J, D. Samanhudi, and A. Suryadi, “Penentuan Rute Distribusi Produk Gas untuk Meminimumkan Biaya Distribusi dengan Metode Clarke & Wright Saving di CV. Surya Inti Gas,” Tekmapro: Journal of Industrial Engineering and Management, vol. 13, no.1, pp. 84-91, 2018, doi: https://doi.org/10.33005/tekmapro.v13i1.64.

I. K, Budayasa, Teori Graph dan Aplikasinya, Surabaya: Unesa University Press, 2007.