Peramalan Pelayanan Service Mobil (After-Sale) Menggunakan Backpropagation Neural Network (BPNN)
DOI:
https://doi.org/10.14421/jiska.2021.6.3.149-160Keywords:
After-Sale, Backpropagation Neural Network, Cars, MSE, PredictionAbstract
The automotive industry in Indonesia, primarily cars, is getting more and more varied. Along with increasing the number of vehicles, Brand Holder Sole Agents (ATPM) compete to provide after-sale services (mobile service). However, the company has difficulty knowing the rate of growth in the number of mobile services handled, thus causing losses that impact sources of income. Therefore, we need a standard method in determining the forecasting of the number of car services in the following year. This study implements the Backpropagation Neural Network (BPNN) method in forecasting car service services (after-sale) and Mean Square Error (MSE) for the process of testing the accuracy of the forecasting results formed. The data used in this study is car service data (after-sale) for the last five years. The results show that the best architecture for forecasting after-sales services using BPNN is the 5-10-5-1 architectural model with a learning rate of 0.2 and the learning function of trainlm and MSE of 0.00045581. This proves that the BPNN method can predict mobile service (after-sale) services with good forecasting accuracy values.
References
Aini, H., Haviluddin, H., Budiman, E., Wati, M., & Puspitasari, N. (2019). Prediksi Produksi Minyak Kelapa Sawit Menggunakan Metode Backpropagation Neural Network. Sains, Aplikasi, Komputasi Dan Teknologi Informasi, 1(1), 24. https://doi.org/10.30872/jsakti.v1i1.2261
Alfajriani, A., Wati, M., & Puspitasari, N. (2020). Penerapan Metode Fuzzy Time Series Chen dan Hsu dalam Memprediksi Kunjungan Wisatawan di Museum Mulawarman. Jurnal Rekayasa Teknologi Informasi (JURTI), 4(2), 144–153. https://doi.org/http://dx.doi.org/10.30872/jurti.v4i2.5802
Ardianto, C., Haryanto, H., & Mulyanto, E. (2018). Prediksi Tingkat Kerawanan Kebakaran di Daerah Kudus Menggunakan Fuzzy Tsukamoto. Creative Information Technology Journal, 4(3), 186. https://doi.org/10.24076/citec.2017v4i3.109
Bisht, K., & Kumar, S. (2016). Fuzzy time series forecasting method based on hesitant fuzzy sets. Expert Systems with Applications, 64, 557–568. https://doi.org/10.1016/j.eswa.2016.07.044
Gadaleta, D., Manganelli, S., Manganaro, A., Porta, N., & Benfenati, E. (2016). A knowledge-based expert rule system for predicting mutagenicity (Ames test) of aromatic amines and azo compounds. Toxicology, 370, 20–30. https://doi.org/10.1016/j.tox.2016.09.008
GAIKINDO. (2018). Domestic Auto Production By Category 2018. Gabungan Industri Kendaraan Bermotor Indonesia (GAIKINDO). https://www.gaikindo.or.id/indonesian-automobile-industry-data/
Haviluddin, ., Alfred, R., Obit, J. H., Ahmad Hijazi, M. H., & Ag Ibrahim, A. A. (2015). A Performance Comparison of Statistical and Machine Learning Techniques in Learning Time Series Data. Advanced Science Letters, 21(10), 3037–3041. https://doi.org/10.1166/asl.2015.6490
Haviluddin, & Dengen, N. (2016). Comparison of SARIMA, NARX and BPNN models in forecasting time series data of network traffic. 2016 2nd International Conference on Science in Information Technology (ICSITech), 264–269. https://doi.org/10.1109/ICSITech.2016.7852645
Haviluddin, H., Arifin, Z., Kridalaksana, A. H., & Cahyadi, D. (2016). Prediksi Kedatangan Turis Asing ke Indonesia Menggunakan Backpropagation Neural Networks. Jurnal Teknologi Dan Sistem Komputer, 4(4), 485. https://doi.org/10.14710/jtsiskom.4.4.2016.485-490
Huang, H.-X., Li, J.-C., & Xiao, C.-L. (2015). A proposed iteration optimization approach integrating backpropagation neural network with genetic algorithm. Expert Systems with Applications, 42(1), 146–155. https://doi.org/10.1016/j.eswa.2014.07.039
Ma, E., Liu, Y., Li, J., & Chen, S. (2016). Anticipating Chinese tourists arrivals in Australia: A time series analysis. Tourism Management Perspectives, 17, 50–58. https://doi.org/10.1016/j.tmp.2015.12.004
Mahanggara, A., & Laksito, A. D. (2019). PREDIKSI PENGUNDURAN DIRI MAHASISWA UNIVERSITAS AMIKOM YOGYAKARTA MENGGUNAKAN METODE NAIVE BAYES. Simetris: Jurnal Teknik Mesin, Elektro Dan Ilmu Komputer, 10(1), 273–280. https://doi.org/10.24176/simet.v10i1.2967
Majhi, B., Rout, M., & Baghel, V. (2014). On the development and performance evaluation of a multiobjective GA-based RBF adaptive model for the prediction of stock indices. Journal of King Saud University - Computer and Information Sciences, 26(3), 319–331. https://doi.org/10.1016/j.jksuci.2013.12.005
Minarni, M., & Aldyanto, F. (2016). Prediksi Jumlah Produksi Roti Menggunakan Metode Logika Fuzzy (Studi Kasus: Roti Malabar Bakery). Jurnal TEKNOIF, 4(2), 59–65.
Mislan, Gaffar, A. F. O., Haviluddin, & Puspitasari, N. (2018). Water Level Prediction of Lake Cascade Mahakam Using Adaptive Neural Network Backpropagation (ANNBP). IOP Conference Series: Earth and Environmental Science, 144(1), 012009. https://doi.org/10.1088/1755-1315/144/1/012009
Purnawansyah, & Haviluddin. (2014). Comparing performance of Backpropagation and RBF neural network models for predicting daily network traffic. 2014 Makassar International Conference on Electrical Engineering and Informatics (MICEEI), 166–169. https://doi.org/10.1109/MICEEI.2014.7067332
Puspitasari, N., Tejawati, A., & Prakoso, F. (2019). Estimasi Stok Penerimaan Bahan Bakar Minyak Menggunakan Metode Fuzzy Tsukamoto. JRST (Jurnal Riset Sains Dan Teknologi), 3(1), 9. https://doi.org/10.30595/jrst.v3i1.3112
Sakinah, N. P., Cholissodin, I., & Widodo, A. W. (2018). Prediksi Jumlah Permintaan Koran Menggunakan Metode Jaringan Syaraf Tiruan Backpropagation. Jurnal Pengembangan Teknologi Informasi Dan Ilmu Komputer (J-PTIIK), 2(7), 2612–2618.
Simanungkalit, J. R., Haviluddin, H., Pakpahan, H. S., Puspitasari, N., & Wati, M. (2020). Algoritma Backpropagation Neural Network dalam Memprediksi Harga Komoditi Tanaman Karet. ILKOM Jurnal Ilmiah, 12(1), 32–38. https://doi.org/10.33096/ilkom.v12i1.521.32-38
Solihat, A. (2019). Layanan Purna Jual pada Produk Otomotif. Business Innovation and Entrepreneurship Journal, 1(1), 6–10. https://doi.org/10.35899/biej.v1i1.5
Syafiq, M., Hartama, D., Kirana, I. O., Gunawan, I., & Wanto, A. (2020). Prediksi Jumlah Penjualan Produk di PT Ramayana Pematangsiantar Menggunakan Metode JST Backpropagation. JURIKOM (Jurnal Riset Komputer), 7(1), 175. https://doi.org/10.30865/jurikom.v7i1.1963
Untari, S. N., Djaja, S., & Widodo, J. (2018). STRATEGI PEMASARAN MOBIL MEREK DAIHATSU PADA DEALER DAIHATSU JEMBER. JURNAL PENDIDIKAN EKONOMI: Jurnal Ilmiah Ilmu Pendidikan, Ilmu Ekonomi Dan Ilmu Sosial, 11(2), 82. https://doi.org/10.19184/jpe.v11i2.6451
Widians, J. A., Puspitasari, N., & Sari, A. F. A. (2019). The Prediction Of Tourist Visiting With Average Based Fuzzy Time Series Method. International Journal of Engineering and Advanced Technology, 8(5C), 1467–1469. https://doi.org/10.35940/ijeat.E1215.0585C19
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Novianti Puspitasari, Haviluddin, Arinda Mulawardani Kustiawan, Hario Jati Setyadi, Gubtha Mahendra Putra
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Authors who publish with this journal agree to the following terms as stated in http://creativecommons.org/licenses/by-nc/4.0
a. Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
b. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
c. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.