PROBLEMA MESIN PENERJEMAH BERBASIS AI DALAM PROSES PENERJEMAHAN BUKU INGGRIS-INDONESIA DAN SOLUSINYA
Abstract
This research aims to find out the main problems of AI-based translation machine, Google Neural Machine Translation System (GNMT) or Google Translate, during an English-Indonesian book translation process. It also has the objective to find the solutions for the problems. To approach the translation issues, the study uses Christiane Nord’s four translation problems which consists of pragmatic translation problems, convention-related translation problems, linguistic translation problems, and text-specific translation problems. Molina and Albir’s techniques of translation are applied to fix the problems. The study uses qualitative methods to analyze the translation issues. From 5447 translated words, it is found that the main problems of Google Translate during book translation are linguistic translation problems, and there are seven translation techniques involved to deal with the problems.
Keywords
Full Text:
PDFReferences
Atmoko, Bambang Dwi. 2017. “Neural Machine Translation Technology Make Google Translate More Accurate | Gizmologi English Edition.” Gizmolo.id. 30 April 2017. https://gizmologi.id/news/ nmt-google-translate/.
Bayu, Krisna. 2020. “Penggunaan Google Translate sebagai Media Pembelajaran Bahasa Inggris Paket B di PKBM Suryani.” Comm-Edu (Community Education Journal) 3 (1): 62. https://doi.org/10.22460/comm-edu.v3i1.3764.
Cambridge Dictionary. 2020. “DEEP LEARNING | meaning in the Cambridge English Dictionary.” Dictionary.cambridge.org. 2020. https://dictionary.cambridge.org/dictionary/english/deep-learning.
Diño, Gino. 2017. “3 Reasons Why Neural Machine Translation Is a Breakthrough.” Slator. 18 Desember 2017. https://slator.com/technology/3-reasons-why-neural-machine-translation-is-a-breakthrough/.
Ernst, Christoph, Jeans Schröter, dan Andreas Sudmann. 2019. “AI and The Imagination to Overcome Difference.” Spheres: Journal for Digital Culture. https://mediarep.org/bitstream/handle/doc/14423/spheres_5_0301_Ernst_ea_AI-Imagination-Difference.pdf?sequence=1.
Herdiansyah, Haris. 2010. Metode Penelitian Kualitatif untuk Ilmu-ilmu Sosial. Jakarta: Salemba Humanika.
Irfan, Muhammad. 2017. “Machine Translation,” Researchgate.net Oktober. https://www.researchgate.net/publication/320730405_ Machine_Translation.
Johnson, Burke, dan Larry Christensen. 2004. Educational Research: Quantitative, Qualitative, and Mixed Approaches. Boston: Pearson.
Koerner, E. F. K., dan R. E. Asher, ed. 1995. Concise History of the Language Sciences: From the Sumerians to the Cognitivists. Cambridge: Cambridge University Press.
Lin, Grace Hui-chin, dan Paul Shih Chieh Chien. 2009. “Machine Translation for Academic Purposes.” Dalam Proceedings of the International Conference on TESOL and Translation, 16.
Maulida, Hidya. 2017. “Persepsi Mahasiswa terhadap Penggunaan Google Translate sebagai Media Menerjemahkan Materi Berbahasa Inggris.” Jurnal SAINTEKOM 7 (1): 56. https://doi.org/10.33020/ saintekom.v7i1.21.
Molina, Lucía, dan Amparo Hurtado Albir. 2002. “Translation Techniques Revisited: A Dynamic and Functionalist Approach.” Meta: Journal des traducteurs 47 (4): 498–512. https://doi.org/ 10.7202/008033ar.
Nord, Christiane. 1991. Text Analysis in Translation: Theory, Methodology, and Didactic Application of a Model for Translation-Oriented Text Analysis. Amssterdam-Atlanta: Rodopi.
Pathak, Amarnath, dan Partha Pakray. 2019. “Neural Machine Translation for Indian Languages.” Journal of Intelligent Systems 28 (3): 465–77. https://doi.org/10.1515/jisys-2018-0065.
Pestov, Ilya. 2018. “A History of Machine Translation from the Cold War to Deep Learning.” Freecodecamp.org. 12 Maret 2018. https://www.freecodecamp.org/news/a-history-of-machine-translation-from-the-cold-war-to-deep-learning-f1d335ce8b5/.
Pujiati, Tri. 2017. “Pemanfaatan Google Translate Dalam Penerjemahan Teks Bahasa Inggris Ke Dalam Bahasa Indonesia (Aplikasi Linguistik Terapan Bidang Penerjemahan).” Proceedings Universitas Pamulang 2 (1). http://openjournal.unpam.ac.id/index. php/Proceedings/article/view/766.
Schäffner, Christina, dan Uwe Wiesemann. 2001. Annotated Texts for Translation: English-German: Functionalist Approaches Illustrated. Clevedon, Buffalo, Toronto, Sydney: Multilingual Matters.
Su, Keh-Yih, dan Jing-Shin Chang. 1992. “Why Corpus-Based Statistics-Oriented Machine Translation.” Dalam IEEE Transactions on Medical Imaging-TMI, 249–62. Montreal, Canada.
Warith, Holakunley. 2016. “Lexis And Structure Definition | Grammar.” Online High School. 23 Mei 2016. https://acadel.org/lexis/.
DOI: https://doi.org/10.14421/ajbs.2020.04105
Refbacks
- There are currently no refbacks.
Copyright (c) 2020 wahyu - untara, Teguh Setiawan
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
ISSN: 2549-1482 (p); 2549-2047 (e)
Adabiyyāt: Jurnal Bahasa dan Sastra, Accreditation Number (Ministry of RTHE/DIKTI): No. 225/E/KPT/2022.
Indexed by:
Adabiyyāt Office:
All Publications by Adabiyyāt: Jurnal Bahasa dan Sastra are licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.