Abstract
Abstract - The service output provided by the UPTD Legal Metrology Office of Tegal City is the assurance of accurate measurement results, which highly depends on the stability of temperature and humidity within the laboratory environment. Uncontrolled fluctuations in these parameters can significantly reduce measurement accuracy and affect public satisfaction and trust as service users. This issue arises because no automatic control system currently regulates the laboratory environment, as temperature and lighting are still adjusted manually by operators, often resulting in unstable and suboptimal conditions. To address this challenge, a community service program was conducted in the field of industrial quality engineering through the implementation of Internet of Things (IoT) technology for automated environmental control. The activity involved direct measurement and variation of several independent variables air conditioner temperature, operating duration, lighting intensity, and human presence to determine the optimal combination that minimizes environmental fluctuation. The developed IoT system automatically regulates AC temperature, fan speed, and lighting intensity based on the standard error fit obtained from the Response Surface Methodology (RSM) model, which defines a K-factors automation as the key control parameter. The system operates adaptively in minute-by-minute loops to maintain optimal temperature and humidity levels while reducing energy consumption by efficiently operating one or two AC units as needed. Through this approach, environmental monitoring and control can be performed wirelessly via smartphones anytime and anywhere, allowing laboratory staff to work more efficiently while maintaining a stable, energy-efficient, and sustainable laboratory environment.
Keyword: Internet of Things (IoT), Legal Metrology, Temperature and Humidity Stability, Response Surface Methodology (RSM), Laboratory Automation.
Abstrak - Output layanan yang dihasilkan oleh UPTD Metrologi Legal Kota Tegal berupa jaminan kebenaran hasil pengukuran sangat bergantung pada kestabilan suhu dan kelembapan ruang laboratorium. Kondisi lingkungan yang tidak ideal atau berfluktuasi secara tidak terkendali dapat menurunkan akurasi pengukuran dan berdampak pada kepuasan serta kepercayaan masyarakat sebagai pengguna layanan. Permasalahan ini muncul karena belum adanya sistem kontrol otomatis terhadap kondisi ruangan, di mana pengaturan suhu dan pencahayaan masih dilakukan secara manual oleh operator. Akibatnya, kondisi ruangan sering kali tidak stabil dan belum mencapai performa optimal. Untuk mengatasi hal tersebut, dilakukan upaya pengabdian masyarakat di bidang rekayasa kualitas industri dengan menerapkan teknologi Internet of Things (IoT) sebagai solusi pengendalian lingkungan berbasis automasi. Kegiatan ini melibatkan proses pengukuran langsung terhadap beberapa variabel bebas, seperti suhu AC, durasi waktu, intensitas cahaya, dan jumlah manusia dalam ruangan. Variabel-variabel tersebut divariasikan untuk memperoleh kondisi optimal yang menghasilkan fluktuasi suhu dan kelembapan paling rendah. Sistem IoT yang dikembangkan dirancang agar dapat mengatur suhu AC, kecepatan kipas, dan intensitas pencahayaan secara otomatis berdasarkan nilai standard error fit dari model Response Surface Methodology (RSM) yang menghasilkan K-factors automation sebagai parameter kendali. Sistem bekerja secara adaptif dengan pengulangan perintah setiap menit untuk mempertahankan kondisi ruangan pada posisi ideal sekaligus menghemat energi listrik dengan menyesuaikan penggunaan satu atau dua unit AC secara efisien. Melalui pendekatan ini, proses pengendalian suhu dan kelembapan dapat dilakukan secara nirkabel melalui smartphone, sehingga meningkatkan kemudahan kerja operator dan memastikan kestabilan lingkungan laboratorium yang lebih presisi, efisien, dan berkelanjutan.
Kata kunci: Internet of Things (IoT), Metrologi Legal, Stabilitas Suhu dan Kelembapan, Response Surface Methodology (RSM), Automasi Laboratorium.
References
Anderson, M. J., & Whitcomb, P. J. (2017). Optimizing Processes Using Response Surface Methods for Design of Experiments Second Edition RSM Simplified (Second, Vol. 3). CRC Press Taylor & Francis.
Barros, N., Sobral, P., Moreira, R. S., Vargas, J., Fonseca, A., Abreu, I., & Guerreiro, M. S. (2024). SchoolAIR: A Citizen Science IoT Framework Using Low-Cost Sensing for Indoor Air Quality Management. Sensors, 24(1). https://doi.org/10.3390/s24010148
Kang, S., Baek, H., Jun, S., Choi, S., Hwang, H., & Yoo, S. (2018a). Laboratory environment monitoring: Implementation experience and field study in a tertiary general hospital. Healthcare Informatics Research, 24(4), 371–375. https://doi.org/10.4258/hir.2018.24.4.371
Katie, B. (2024). Internet of Things (IoT) for Environmental Monitoring. International Journal of Computing and Engineering, 6(3), 29–42. www.carijournals.org
Laha, S. R., Pattanayak, B. K., & Pattnaik, S. (2022). Advancement of Environmental Monitoring System Using IoT and Sensor: A Comprehensive Analysis. AIMS Environmental Science, 9(6), 771–800. https://doi.org/10.3934/environsci.2022044
Liunokas, Y., Taka, S. D., & Otta, G. M. (2022). Integrasi Penelitian dan Pengabdian Kepada Masyarakat Berbasis Digital bagi Dosen STKIP Sinar Pancasila Betun-Kabupaten Malaka. KELIMUTU Journal of Community Service (KJCS), 2(2), 52–55. https://doi.org/10.24034/j25485024.y1999.v3.i2.1886
Medagedara, O. V., & Liyanage, M. H. (2024). Development of an IoT-based Real-Time Temperature and Humidity Monitoring System for Factory Electrical Panel Rooms. Engineer: Journal of the Institution of Engineers, Sri Lanka, 57(1), 21–30. https://doi.org/10.4038/engineer.v57i1.7636
Moria, K. M., Khurshid, H., Mustafa, M. R. U., Alhothali, A., & Bamasag, O. O. (2022b). Application of the Response Surface Methodology (RSM) in the Optimization of Acenaphthene (ACN) Removal from Wastewater by Activated Carbon. Sustainability (Switzerland), 14(14). https://doi.org/10.3390/su14148581
Mustofa, K., Yanti, N., & Widagda, M. E. P. (2024). Implementasi Sistem Kendali dan Monitoring Level Solar Otomatis Berbasis Iot (Internet Of Things) Pada Unit Rubber Tyred Gantry Di PT. Equiport Inti Indonesia. Jurnal Ilmiah Rekayasa Elektro, 1(1), 65–73.
Myers, R. H., Montgomery, D. C., & Anderson-Cook, C. M. (2009). Response Surface Methodology (third, Vol. 3).
Permendag Nomor 06 Tahun 2023, Pub. L. No. 06, Permendag RI (2023).
Ullo, S. L., & Sinha, G. R. (2020a). Advances in smart environment monitoring systems using iot and sensors. In Sensors (Switzerland) (Vol. 20, Issue 11). MDPI AG. https://doi.org/10.3390/s20113113
Zhao, Y. L., Tang, J., Huang, H. P., Wang, Z., Chen, T. L., Chiang, C. W., & Chiang, P. C. (2020). Development of iot technologies for air pollution prevention and improvement. Aerosol and Air Quality Research, 20(12), 2874–2888. https://doi.org/10.4209/aaqr.2020.05.0255

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Copyright (c) 2025 The copyright of published articles belongs to the author(s)
