Pengenalan Pola Huruf Hijaiyah dengan Metode Local Binary Pattern Menggunakan Algoritma Fuzzy K-Nearest Neighbor
DOI:
https://doi.org/10.14421/jiska.2022.7.1.68-74Keywords:
Feature Extraction, Fuzzy K-Nearest Neighbor, Hijaiyah, Histogram, Local Binary PatternAbstract
A letter is a form, stroke, or symbol writing system. Any information obtained from a sentence depends on the letters are written clearly. Finding written hijaiyah letters can be recognized by humans, but will be difficult if a computer tries to recognize them. The reason system is difficult is because of the large variety of different letters. This study aims to make it easier for someone to learn to recognize hijaiyah letters by using the Local Binary Pattern method for the feature extraction process. The results of feature extraction will take the maximum value of the histogram of each letter. And results feature extraction will be carried out classification process using the Fuzzy K-Nearest Neighbor algorithm until finally hijaiyah letters can be recognized. Based on experimental results that have been carried out, the highest level of accuracy is obtained when the amount of training data is 154 data and the number of data testing is 29 data, resulting in an accuracy rate of 96.55%.
References
Abu Alfeilat, H. A., Hassanat, A. B. A., Lasassmeh, O., Tarawneh, A. S., Alhasanat, M. B., Eyal Salman, H. S., & Prasath, V. B. S. (2019). Effects of Distance Measure Choice on K-Nearest Neighbor Classifier Performance: A Review. Big Data, 7(4), 221–248. https://doi.org/10.1089/big.2018.0175
Fadholi, R., Sari, Y. A., & Bachtiar, F. A. (2019). Pengenalan Citra Makanan Tradisional menggunakan Fitur Hue Saturation Pengenalan Citra Makanan Tradisional menggunakan Fitur Hue Saturation Value dan Fuzzy k-Nearest Neighbor. Pengembangan Teknologi Informasi Dan Ilmu Komputer, 3(7), 6556–6566.
Fajriani, N. (2017). Pengenalan Pola Garis Telapak Tangan Menggunakan Metode Fuzzy K-Nearest Neighbor. Edutic - Scientific Journal of Informatics Education, 4(1). https://doi.org/10.21107/edutic.v4i1.3385
Faturrahman, I. (2018). Pengenalan Pola Huruf Hijaiyah Khat Kufi dengan Metode Deteksi Tepi Sobel Berbasis Jaringan Syaraf Tiruan Backpropagation. JURNAL TEKNIK INFORMATIKA, 11(1), 37–46. https://doi.org/10.15408/jti.v11i1.6262
Gafar, A. A., & Sari, J. Y. (2018). Sistem Pengenalan Bahasa Isyarat Indonesia dengan Menggunakan Metode Fuzzy K-Nearest Neighbor. Jurnal ULTIMATICS, 9(2), 122–128. https://doi.org/10.31937/ti.v9i2.671
Kaur, H., & Sohi, N. (2017). A Study for Applications of Histogram in Image Enhancement. The International Journal of Engineering and Science, 06(06), 59–63. https://doi.org/10.9790/1813-0606015963
Liu, P., Guo, J.-M., Chamnongthai, K., & Prasetyo, H. (2017). Fusion of color histogram and LBP-based features for texture image retrieval and classification. Information Sciences, 390, 95–111. https://doi.org/10.1016/j.ins.2017.01.025
Nanni, L., Lumini, A., & Brahnam, S. (2012). Survey on LBP based texture descriptors for image classification. Expert Systems with Applications, 39(3), 3634–3641. https://doi.org/10.1016/j.eswa.2011.09.054
Riana, D., Syahrani, M., Mandiri, U. N., Melayu, C., & Timur, K. J. (2022). Pengelolaan Citra Digital Dengan Menggunakan Metode Transformasi Gryascale dan Pemerataan Histogram. Jurnal Teknik Informatika Kaputama (JTIK), 6(1), 108–119.
Rustamaji, H. C., Simanjuntak, O. S., Luhrie, S. F., Yuwono, B., & Juwairiah. (2019). Categorical Data Classification based on Fuzzy K-Nearest Neighbor Approach. 2019 5th International Conference on Science in Information Technology (ICSITech), 171–175. https://doi.org/10.1109/ICSITech46713.2019.8987477
Sanjaya, A., & Setiawan, A. B. (2018). Pengenalan Tulisan Tangan Huruf Latin Dengan Menggunakan Metode K-Nearest Neighbour. Journal of Chemical Information and Modeling, 2(2), 1689–1699.
Sanjaya, A., & Widodo, D. W. (2018). Identifikasi Tulisan Tangan Huruf Hijaiyah. Network Engineering Research Operation, 4(1), 23–29. https://doi.org/10.21107/nero.v4i1.108
Saputra, R. A., & Asdar. (2021). Pengenalan Pola Huruf Arab Dengan Metode Backpropagation. Proceeding Konferensi Nasional Ilmu Komputer (KONIK), 5, 424–427.
Sari, J. Y., & Saputra, R. A. (2018). Pengenalan Finger Vein Menggunakan Local Line Binary Pattern dan Learning Vector Quantization. Jurnal ULTIMA Computing, 9(2), 52–57. https://doi.org/10.31937/sk.v9i2.790
Setiyorini, A., & Sari, J. Y. (2017). Perbaikan Kualitas Citra Untuk Klasifikasi Daun Menggunakan Metode Fuzzy K-Nearest Neighbor. Jurnal ULTIMATICS, 9(2), 129–135. https://doi.org/10.31937/ti.v9i2.688
Surrisyad, H., & Yazid, A. S. (2018). Aplikasi Jaringan Syaraf Tiruan dalam Pengenalan Pola Huruf Pegon Jawa. JISKA (Jurnal Informatika Sunan Kalijaga), 3(1), 34. https://doi.org/10.14421/jiska.2018.31-04
Wu, X., Liu, X., Hiramatsu, K., & Kashino, K. (2017). Contrast-accumulated histogram equalization for image enhancement. 2017 IEEE International Conference on Image Processing (ICIP), typically 256, 3190–3194. https://doi.org/10.1109/ICIP.2017.8296871
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Asdar, Rizal Adi Saputra, Ika Purwanti Ningrum

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Authors who publish with this journal agree to the following terms as stated in http://creativecommons.org/licenses/by-nc/4.0
a. Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
b. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
c. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.