Analisis dan Optimalisasi Performa Algoritma Gaussian Naive Bayes pada Prediksi Metabolic Syndrome Menggunakan SMOTE

Authors

  • Nadiyah Jihan Fauziyah UIN Maulana Malik Ibrahim Malang
  • Fadilla Rahmania UIN Maulana Malik Ibrahim Malang
  • Muhammad Daniyal UIN Maulana Malik Ibrahim Malang
  • Nur Fitriyah Ayu Tunjung Sari UIN Maulana Malik Ibrahim Malang

DOI:

https://doi.org/10.14421/jiska.2024.9.2.112-122

Keywords:

Metabolic Syndrome, Machine learning, Gaussian Naive Bayes, Synthetic Minority Over-sampling Technique (SMOTE), Prediction

Abstract

Metabolic syndrome is a complex global health problem, with symptoms such as abdominal obesity, insulin resistance, high blood pressure, high blood sugar, and abnormal blood lipids. With this global challenge, several studies have attempted to predict these diseases using machine learning methods. However, often, predictions about a disease result in data imbalance where minority classes are underrepresented. To balance the class proportions, the Synthetic Minority Over-sampling Technique (SMOTE) method replicates the minority class samples. In this research, the technique applied to predict is the Gaussian Naive Bayes (GNB) algorithm. The results show an increase in prediction accuracy by 0.2 from 0.81 to 0.83. This study confirms the critical role of the SMOTE oversampling method in machine learning using the Gaussian Naive Bayes (GNB) algorithm in Metabolic Syndrome prediction and its positive impact on diagnostic efficiency and public health.

References

Anand, M. V., KiranBala, B., Srividhya, S. R., C., K., Younus, M., & Rahman, M. H. (2022). Gaussian Naïve Bayes Algorithm: A Reliable Technique Involved in the Assortment of the Segregation in Cancer. Mobile Information Systems, 2022, 1–7. https://doi.org/10.1155/2022/2436946

Chawla, N. V., Bowyer, K. W., Hall, L. O., & Kegelmeyer, W. P. (2002). SMOTE: Synthetic Minority Over-sampling Technique. Journal of Artificial Intelligence Research, 16, 321–357. https://doi.org/10.1613/jair.953

Dobrowolski, P., Prejbisz, A., Kuryłowicz, A., Baska, A., Burchardt, P., Chlebus, K., Dzida, G., Jankowski, P., Jaroszewicz, J., Jaworski, P., Kamiński, K., Kapłon-Cieślicka, A., Klocek, M., Kukla, M., Mamcarz, A., Mastalerz-Migas, A., Narkiewicz, K., Ostrowska, L., Śliż, D., … Bogdański, P. (2022). Metabolic syndrome – a new definition and management guidelines A joint position paper by the Polish Society of Hypertension, Polish Society for the Treatment of Obesity, Polish Lipid Association, Polish Association for Study of Liver, Polish Society of Family Medicine, Polish Society of Lifestyle Medicine, Division of Prevention and Epidemiology Polish Cardiac Society, “Club 30” Polish Cardiac Society, and Division of Metabolic and Bariatric Surgery Society of Polish Surgeons. Archives of Medical Science, 18(5), 1133–1156. https://doi.org/10.5114/aoms/152921

Han, T. S., & Lean, M. E. (2016). A clinical perspective of obesity, metabolic syndrome and cardiovascular disease. JRSM Cardiovascular Disease, 5, 204800401663337. https://doi.org/10.1177/2048004016633371

Herningtyas, E. H., & Ng, T. S. (2019). Prevalence and distribution of metabolic syndrome and its components among provinces and ethnic groups in Indonesia. BMC Public Health, 19(1), 1–12. https://doi.org/10.1186/S12889-019-6711-7/FIGURES/3

Hu, X., Li, X.-K., Wen, S., Li, X., Zeng, T.-S., Zhang, J.-Y., Wang, W., Bi, Y., Zhang, Q., Tian, S.-H., Min, J., Wang, Y., Liu, G., Huang, H., Peng, M., Zhang, J., Wu, C., Li, Y.-M., Sun, H., … Chen, L.-L. (2022). Predictive modeling the probability of suffering from metabolic syndrome using machine learning: A population-based study. Heliyon, 8(12), e12343. https://doi.org/10.1016/j.heliyon.2022.e12343

Huang, P. L. (2009). A comprehensive definition for metabolic syndrome. Disease Models & Mechanisms, 2(5–6), 231–237. https://doi.org/10.1242/dmm.001180

Libnao, M., Misula, M., Andres, C., Mariñas, J., & Fabregas, A. (2023). Traffic incident prediction and classification system using naïve bayes algorithm. Procedia Computer Science, 227, 316–325. https://doi.org/10.1016/j.procs.2023.10.530

Palaniappan, L. P., Wong, E. C., Shin, J. J., Fortmann, S. P., & Lauderdale, D. S. (2011). Asian Americans have greater prevalence of metabolic syndrome despite lower body mass index. International Journal of Obesity, 35(3), 393–400. https://doi.org/10.1038/ijo.2010.152

Rochlani, Y., Pothineni, N. V., Kovelamudi, S., & Mehta, J. L. (2017). Metabolic syndrome: Pathophysiology, management, and modulation by natural compounds. Therapeutic Advances in Cardiovascular Disease, 11(8), 215–225. https://doi.org/10.1177/1753944717711379/ASSET/IMAGES/LARGE/10.1177_1753944717711379-FIG1.JPEG

Saklayen, M. G. (2018). The Global Epidemic of the Metabolic Syndrome. Current Hypertension Reports, 20(2), 1–8. https://doi.org/10.1007/S11906-018-0812-Z/METRICS

Tavares, L. D., Manoel, A., Donato, T. H. R., Cesena, F., Minanni, C. A., Kashiwagi, N. M., da Silva, L. P., Amaro, E., & Szlejf, C. (2022). Prediction of metabolic syndrome: A machine learning approach to help primary prevention. Diabetes Research and Clinical Practice, 191, 110047. https://doi.org/10.1016/j.diabres.2022.110047

The GBD 2015 Obesity Collaborators. (2017). Health Effects of Overweight and Obesity in 195 Countries over 25 Years. New England Journal of Medicine, 377(1), 13–27. https://doi.org/10.1056/NEJMOA1614362/SUPPL_FILE/NEJMOA1614362_DISCLOSURES.PDF

Venkata, P., & Pandya, V. (2022). Data mining model and Gaussian Naive Bayes based fault diagnostic analysis of modern power system networks. Materials Today: Proceedings, 62(P13), 7156–7161. https://doi.org/10.1016/j.matpr.2022.03.035

Wilkinson, M. J., Manoogian, E. N. C., Zadourian, A., Lo, H., Fakhouri, S., Shoghi, A., Wang, X., Fleischer, J. G., Navlakha, S., Panda, S., & Taub, P. R. (2020). Ten-Hour Time-Restricted Eating Reduces Weight, Blood Pressure, and Atherogenic Lipids in Patients with Metabolic Syndrome. Cell Metabolism, 31(1), 92-104.e5. https://doi.org/10.1016/j.cmet.2019.11.004

World Health Organization. (2020). The top 10 causes of death. World Health Organization. https://www.who.int/news-room/fact-sheets/detail/the-top-10-causes-of-death

Zhou, Y., Wu, T., Jiang, Y., Li, Y., Li, K., Quan, L., & Lyu, Q. (2022). DeepNup: Prediction of Nucleosome Positioning from DNA Sequences Using Deep Neural Network. Genes, 13(11), 1983. https://doi.org/10.3390/genes13111983

Downloads

Published

2024-05-25

How to Cite

Fauziyah, N. J., Rahmania, F., Daniyal, M., & Sari, N. F. A. T. (2024). Analisis dan Optimalisasi Performa Algoritma Gaussian Naive Bayes pada Prediksi Metabolic Syndrome Menggunakan SMOTE. JISKA (Jurnal Informatika Sunan Kalijaga), 9(2), 112–122. https://doi.org/10.14421/jiska.2024.9.2.112-122

Issue

Section

Articles