Analisis Pengaruh Kompresi File Pada Media Sosial Terhadap Ketahanan Image Steganografi Pada Metode Least Significant Bit (LSB)
DOI:
https://doi.org/10.14421/csecurity.2025.8.2.5310Abstract
Media sosial saat ini menjadi platform utama untuk pertukaran informasi di kalangan masyarakat luas. Platform seperti Facebook, Instagram, dan Twitter memungkinkan pengguna untuk berbagi gambar dengan audiens yang sangat besar. Namun, penggunaan media sosial ini juga menimbulkan kekhawatiran terkait privasi dan keamanan data, karena informasi yang dibagikan di platform ini rentan terhadap ancaman kejahatan. Metode Least Significant Bit (LSB) merupakan salah satu teknik steganografi yang paling sederhana dan paling banyak digunakan dalam penyembunyian data. Tujuan dari penelitian ini adalah untuk mengembangkan dan mengimplementasikan metode steganografi LSB yang lebih aman dan tahan terhadap serangan dan gangguan. Metode Least Significant Bit (LSB) merupakan salah satu teknik steganografi yang efektif untuk menyembunyikan pesan dalam media digital, termasuk gambar. Namun efektivitas metode ini dapat dianalisis berdasarkan beberapa parameter, seperti kapasitas penyimpanan, keterlihatan, dan ketahanan terhadap kompresi atau manipulasi gambar, khususnya pada platform media sosial seperti Telegram, Instagram, dan Facebook. Hasil pengujian yang dilakukan menunjukkan, file pesan yang telah disembunyikan dalam gambar tidak dapat ditemukan lagi akibat perubahan ekstensi dari file gambar yang telah di kirim serta penerapan metode kompresi lossy pada masing-masing platform media sosial juga mempengaruhi file stego yang ada.
Kata kunci: Digital Forensik, Sosial Media, Gambar, Steganografi, Least Significant Bit
--------------------------------------------------------------------------------------------------
Analysis Of The Effect Of File Compression On Social Media On Image Steganography Resilience In The Least Significant Bit (LSB) Method
Social media is currently a major platform for information exchange among the wider community. Platforms such as Facebook, Instagram, and Twitter allow users to share images with a very large audience. However, the use of social media also raises concerns regarding privacy and data security, because information shared on these platforms is vulnerable to threats of crime. The Least Significant Bit (LSB) method is one of the simplest and most widely used steganography techniques in data hiding. The purpose of this study is to develop and implement a LSB steganography method that is more secure and resistant to attacks and interference. The Least Significant Bit (LSB) method is one of the effective steganography techniques for hiding messages in digital media, including images. However, the effectiveness of this method can be analyzed based on several parameters, such as storage capacity, visibility, and resistance to compression or image manipulation, especially on social media platforms such as Telegram, Instagram, and Facebook. Test results show that message files that have been hidden in images can no longer be found due to changes in the extension of the image file that has been sent. The application of lossy compression methods on each social media platform also affects the existing stego file..
Keywords: Digital Forensics, Social Media, Image, Steganography, Least Significant Bit
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Muhammad Na'im Al Jum'ah, Arifin Arifin

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Attribution-ShareAlike 4.0 International (CC BY-SA 4.0)
You are free to:
- Share — copy and redistribute the material in any medium or format
- Adapt — remix, transform, and build upon the material for any purpose, even commercially.
Under the following terms:
- Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- ShareAlike — If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.

