Subduction and Local Fault Earthquake Analysis Using ST-DBSCAN Clustering Algorithm in The Special Region of Yogyakarta (DIY)

Authors

  • Wuri Handayani Universitas Mercubuana Yogyakarta
  • Irfan Pratama Universitas Mercubuana Yogyakarta
  • Nugroho Budi Wibowo Stasiun Geofisika Sleman

DOI:

https://doi.org/10.14421/kaunia.5347

Keywords:

earthquakes, subduction, local faults, Davies-Bouldin Index, Silhouette Score

Abstract

This study aims to analyze the spatio-temporal patterns of subduction and local fault earthquakes in the Special Region of Yogyakarta using the ST-DBSCAN (Spatio-Temporal Density-Based Spatial Clustering of Applications with Noise) algorithm. A total of 5,403 earthquake events from 2019 to 2024 were clustered using spatial parameters (2–5 km) and a temporal window of 10 days. The results were evaluated using the Davies-Bouldin Index (DBI) and Silhouette Score. In the subduction zone, nine clusters were identified with a DBI of 3.23 and a Silhouette Score of 0.18, indicating moderate separation. Meanwhile, 25 clusters were detected in the local fault zone, particularly around the Opak and Oyo Faults, with a higher DBI of 3.82 and a negative Silhouette Score (-0.14), suggesting overlapping clusters and weak structure. The clustering outcomes correlate with geological features and offer insights for improving earthquake hazard assessment and early warning systems in Yogyakarta.

References

Ajitomo, W. & Pratama, I. (2024). Application of the dbscan method for the identification of earthquake clusters in the yogyakarta region. Journal of Informatics and Software Engineering, 6(1).

BMKG (2024). Katalog gempa bumi signifikan dan merusak (tahun 1821–2023). https://yogyakarta.bmkg.go.id/buletin-mkg/katalog-gempa-bumi-signifikan-merusak-tahun-1821-2023/ [Accessed: 2025-08-13].

BMKG (2025). Katalog gempabumi dan tsunami untuk mitigasi. https://www.bmkg.go.id/gempabumi/ mitigasi/katalog-gempabumi-tsunami [Accessed: 2025-08-13].

Bountzis, P., Papadimitriou, E., & Tsaklidis, G. (2022). Identification and temporal characteristics of earthquake clusters in selected areas in greece. Applied Sciences, 12(4):1908.

Cesca, S. (2020). Seiscloud, a tool for density-based seismicity clustering and visualization. Journal of Seismology, 24(3):443–457.

Davies, L. & Bouldin, D. W. (1979). A cluster separation measure. IEEE Trans Pattern Anal Mach Intell, PAMI1.

Ester, M., Kriegel, H., Sander, J., & Xu, X. (1996). A density-based algorithm for discovering clusters in large spatial databases with noise. In Proceedings of the Second International Conference on Knowledge Discovery and Data Mining.

Gaonkar, M. N. & Sawant, K. (2013). Autoepsdbscan: Dbscan with eps automatic for large dataset. International Journal on Advanced Computer Theory and Engineering, 2(2):11–16.

Han, J. W., Kamber, M., & Pei, J. (2012). Data mining: Concepts and techniques (3rd ed.). Morgan Kaufmann Publishers.

Hutchings, S. J. & Mooney, W. D. (2021). The seismicity of indonesia and tectonic implications. Geochemistry, Geophysics, Geosystems, 22(9):e2021GC009812.

Iswari, L. (2022). Profiling the spatial and temporal properties of earthquake occurrences using st-dbscan algorithm. In 2022 IEEE 7th International Conference on Information Technology and Digital Applications (ICITDA), pages 1–8. IEEE.

Iwasaki, T., Levin, V., Nikulin, A., & Iidaka, T. (2013). Constraints on the moho in japan and kamchatka. Tectonophysics, 609:184–201.

Kong, Q., e. a. (2024). Spatiotemporal clustering of seismic events using modified dbscan. Earthquake Science.

Lee, C. J., e. a. (2023). Earthquake segmentation using spatiotemporal clustering. Bulletin of the Seismological Society of America.

Manalu, D. J., Rahmawati, R., & Widiharih, T. (2021). Pengelompokan titik gempa di pulau sulawesi menggunakan algoritma st-dbscan (spatio temporal-density based spatial clustering application with noise). Jurnal Gaussian, 10(4):554–561.

Nicolis, O., Delgado, L., Peralta, B., Díaz, M., & Chiodi, M. (2024). Space-time clustering of seismic events in chile using st-dbscan-ev algorithm. Environmental and Ecological Statistics, 31(2):509–536.

Piegari, E., Camanni, G., Mercurio, M., & Marzocchi, W. (2024). Illuminating the hierarchical segmentation of faults through an unsupervised learning approach applied to clouds of earthquake hypocenters. Earth and Space Science, 11(10):e2023EA003267.

Ramadan, H. S. & El-Bahnasy, K. (2023). Enhanced st-dbscan with auto-parameter estimation. Journal of Applied Geophysics.

Sharma, A. & Nanda, S. J. (2024). A many objective chimp optimization algorithm to de-cluster earthquake catalogs in space time domain. Soft Computing, 28(6):5287–5320.

Sharma, A., Vijay, R. K., & Nanda, S. J. (2023). Identification and spatio-temporal analysis of earthquake clusters using som–dbscan. Neural Computing and Applications.

Shearer, P. M. (2019). Introduction to seismology. Cambridge university press.

Tanaka, T. & Matsumoto, H. (2024). Adaptive spatiotemporal clustering of japanese seismicity. Geophysical Journal International.

Wagner, D., Koulakov, I., Rabbel, W., Luehr, B.-G., Wittwer, A., Kopp, H., Bohm, M., Asch, G., & scientists, M. (2007). Joint inversion of active and passive seismic data in central java. Geophysical Journal International, 170(2):923–932.

Wang, S. & Zhan, Z. (2023). Clustering of earthquakes using st-dbscan on large datasets. Seismological Research Letters.

Wang, Z., Jin, Z., & Lin, J. (2022). Slab melting and arc magmatism behind the japan trench: Evidence from seismic and thermal structure imaging. Tectonophysics, 833:229340.

Wijaya, O. O. et al. (2024). Analysis of sulawesi earthquake data from 2019 to 2023 using dbscan clustering. Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi), 8(4):454–465.

Zhao, D., Wang, Z., Umino, N., & Hasegawa, A. (2007). Tomographic imaging outside a seismic network: Application to the northeast japan arc. Bulletin of the Seismological Society of America, 97(4):1121–1132.

Downloads

Published

2025-08-22

How to Cite

Handayani, W., Pratama, I., & Wibowo, N. B. . (2025). Subduction and Local Fault Earthquake Analysis Using ST-DBSCAN Clustering Algorithm in The Special Region of Yogyakarta (DIY). Kaunia: Integration and Interconnection Islam and Science Journal, 21(1), 27–39. https://doi.org/10.14421/kaunia.5347

Issue

Section

Articles