Comparative Study of K-Means Clustering Algorithm and K-Medoids Clustering in Student Data Clustering

Authors

DOI:

https://doi.org/10.14421/jiska.2022.7.2.91-99

Keywords:

Data Mining, Data Pre-Processing, Validation Test, Davies Bouldin Index, Optimal

Abstract

Universities as educational institutions have very large amounts of academic data which may not be used properly. The data needs to be analyzed to produce information that can map the distribution of students. Student academic data processing utilizes data mining processes using clustering techniques, K-Means and K-Medoids. This study aims to implement and analyze the comparison of which algorithm is more optimal based on the cluster validation test with the Davies Bouldin Index. The data used are academic data of UIN Sunan Kalijaga students in the 2013-2015 batch. In the k-Means process, the best number of clusters is 5 with a DBI value of 0.781. In the k-Medoids process, the best number of clusters is 3 with a DBI value of 0.929. Based on the value of the DBI validation test, the k-Means algorithm is more optimal than the k-Medoids. So that the cluster of students with the highest average GPA of 3,325 is 401 students.

Author Biography

Maria Ulfah Siregar, UIN Sunan Kalijaga Yogyakarta

References

Alhamdani, F. D. S., Dianti, A. A., & Azhar, Y. (2021). Segmentasi Pelanggan Berdasarkan Perilaku Penggunaan Kartu Kredit Menggunakan Metode K-Means Clustering. JISKA (Jurnal Informatika Sunan Kalijaga), 6(2), 70–77. https://doi.org/10.14421/jiska.2021.6.2.70-77

Davies, D. L., & Bouldin, D. W. (1979). A Cluster Separation Measure. IEEE Transactions on Pattern Analysis and Machine Intelligence, PAMI-1(2), 224–227. https://doi.org/10.1109/TPAMI.1979.4766909

Farissa, R. A., Mayasari, R., & Umaidah, Y. (2021). Perbandingan Algoritma K-Means dan K-Medoids Untuk Pengelompokkan Data Obat dengan Silhouette Coefficient di Puskesmas Karangsambung. Journal of Applied Informatics and Computing, 5(2), 109–116. https://doi.org/10.30871/jaic.v5i1.3237

Fitriyadi, A. U. (2021). Algoritma K-Means dan K-Medoids Analisis Algoritma K-Means dan K-Medoids Untuk Clustering Data Kinerja Karyawan Pada Perusahaan Perumahan Nasional. KILAT, 10(1), 157–168. https://doi.org/10.33322/kilat.v10i1.1174

Iskandar, I. D., Pertiwi, M. W., Kusmira, M., & Amirulloh, I. (2018). Komparasi Algoritma Clustering Data Media Online. IKRA-ITH INFORMATIKA : Jurnal Komputer Dan Informatika, 2(3), 1–8.

Kharisma, R. B., & Yazid, A. S. (2018). The Mapping of Access Point Workloads at UIN Sunan Kalijaga Based on Log Analysis using K-Means Algorithm. IJID (International Journal on Informatics for Development), 6(1), 17. https://doi.org/10.14421/ijid.2017.06105

Kusrini, E. T. L., & Taufiq, E. (2019). Algoritma Data Mining. Penerbit Andi.

Muhammad, A. F. (2015). Klasterisasi Proses Seleksi Pemain Menggunakan Algoritma K-Means (Study Kasus : Tim Hockey Kabupaten Kendal). Universitas Dian Nuswantoro.

Ningsih, W. A., Indriani, F., & Farmadi, A. (2019). Klasifikasi Detak Jantung Janin Dengan Learning Vector Quantization (LVQ). Seminar Nasional Ilmu Komputer (SOLITER), 2, 130–135.

Nurhayati, Sinatrya, N. S., Wardhani, L. K., & Busman. (2018). Analysis of K-Means and K-Medoids’s Performance Using Big Data Technology. 2018 6th International Conference on Cyber and IT Service Management (CITSM), 1–5. https://doi.org/10.1109/CITSM.2018.8674251

Oktarina, C., Notodiputro, K. A., & Indahwati, I. (2020). Comparison of K-Means Clustering Method and K-Medoids on Twitter Data. Indonesian Journal of Statistics and Its Applications, 4(1), 189–202. https://doi.org/10.29244/ijsa.v4i1.599

Pramesti, D. F., Furqon, M. T., & Dewi, C. (2017). Implementasi Metode K-Medoids Clustering Untuk Pengelompokan Data. Jurnal Pengembangan Teknologi Informasi Dan Ilmu Komputer, 1(9), 723–732.

Santosa, B. (2007). Teknik Pemanfaatan Data untuk Keperluan Bisnis (1st ed.). Graha Ilmu.

Sindi, S., Ningse, W. R. O., Sihombing, I. A., R.H.Zer, F. I., & Hartama, D. (2020). Analisis Algoritma K-Medoids Clustering dalam Pengelompokan Penyebaran Covid-19 di Indonesia. Jurnal Teknologi Informasi, 4(1), 166–173. https://doi.org/10.36294/jurti.v4i1.1296

Sudijono, A. (2010). Pengantar Statistik Pendidikan. RajaGrafindo Persada.

Sugriyono, S., & Siregar, M. U. (2020). Preprocessing kNN algorithm classification using K-means and distance matrix with students’ academic performance dataset. Jurnal Teknologi Dan Sistem Komputer, 8(4). https://doi.org/10.14710/jtsiskom.2020.13874

Supriyadi, A., Triayudi, A., & Sholihati, I. D. (2021). Perbandingan Algoritma K-Means dengan K-Medoids pada Pengelompokan Armada Kendaraan Truk Berdasarkan Produktivitas. JIPI (Jurnal Ilmiah Penelitian Dan Pembelajaran Informatika), 6(2), 229–240. https://doi.org/10.29100/jipi.v6i2.2008

Susanto, B. (2013). Data Preprocessing.

Downloads

Published

2022-05-25

How to Cite

Qomariyah, & Siregar, M. U. (2022). Comparative Study of K-Means Clustering Algorithm and K-Medoids Clustering in Student Data Clustering. JISKA (Jurnal Informatika Sunan Kalijaga), 7(2), 91–99. https://doi.org/10.14421/jiska.2022.7.2.91-99

Issue

Section

Articles