E-commerce Service Chatbot Application Design using KNN and Random Forest Methods

Authors

  • Fardan Zamakhsyari Universitas Islam Negeri Sunan Kalijaga

DOI:

https://doi.org/10.14421/jiska.2025.10.1.100-109

Keywords:

Chatbot, E-Commerce, NLP, KNN, Random Forest

Abstract

Our lives are profoundly shaped by technology, with the expansion of e-commerce being a notable outcome that demands attention. Given the prevalence of smartphones equipped with rapid messaging and networking applications, individuals often utilize these platforms to communicate with sellers, offering a convenient means for sellers to efficiently engage with a diverse customer base. Recognizing this trend, there arises a necessity for the digital transformation of services to enhance operational efficiency. In response to this need, the researcher has developed a chatbot application aimed at improving customer service, employing machine learning techniques with the KNN and Random Forest algorithms. To assess the application's viability, the chatbot's results undergo an accuracy test, revealing a satisfactory accuracy value of 71.4%, thereby affirming its feasibility.

References

Ahmad, G. N., Ullah, S., Algethami, A., Fatima, H., & Akhter, S. M. H. (2022). Comparative Study of Optimum Medical Diagnosis of Human Heart Disease Using Machine Learning Technique with and Without Sequential Feature Selection. IEEE Access, 10, 23808–23828. https://doi.org/10.1109/ACCESS.2022.3153047

Astuti, R. N., & Fatchan, M. (2019). Perancangan Aplikasi Teknologi Chatbot Untuk Industri Komersial 4.0. Prosiding Seminar Nasional Teknologi Dan Sains (SNasTekS), 1(1), 339–348.

Chandra, A. Y., Kurniawan, D., & Musa, R. (2020). Perancangan Chatbot Menggunakan Dialogflow Natural Language Processing (Studi Kasus: Sistem Pemesanan pada Coffee Shop). Jurnal Media Informatika Budidarma, 4(1), 208. https://doi.org/10.30865/mib.v4i1.1505

Fachreza, M. R. D., Suhartono, S., & Yaqin, M. A. (2023). Klasifikasi Sentimen Masyarakat Terhadap Proses Pemindahan Ibu Kota Negara (IKN) Indonesia pada Media Sosial Twitter Menggunakan Metode Naïve Bayes. JISKA (Jurnal Informatika Sunan Kalijaga), 8(3), 243–251. https://doi.org/10.14421/jiska.2023.8.3.243-251

Intan, P. K. (2019). Comparison of Kernel Function on Support Vector Machine in Classification of Childbirth. Jurnal Matematika “MANTIK,” 5(2), 90–99. https://doi.org/10.15642/mantik.2019.5.2.90-99

Jadhav, S. S., & Kalita, P. C. (2019). Design Thinking Approach in Planning E-commerce for Domestic Plumbing Services. ACM International Conference Proceeding Series, 20–24. https://doi.org/10.1145/3385061.3385067

Kumar, R., & Ali, M. M. (2020). A Review on Chatbot Design and Implementation Techniques. International Research Journal of Engineering and Technology, 2791–2800. https://www.researchgate.net/publication/348569890

Mathew, R. B., Varghese, S., Joy, S. E., & Alex, S. S. (2019). Chatbot for disease prediction and treatment recommendation using machine learning. Proceedings of the International Conference on Trends in Electronics and Informatics, ICOEI 2019, Icoei, 851–856. https://doi.org/10.1109/ICOEI.2019.8862707

Mohey, D. (2016). Enhancement Bag-of-Words Model for Solving the Challenges of Sentiment Analysis. International Journal of Advanced Computer Science and Applications, 7(1), 244–252. https://doi.org/10.14569/ijacsa.2016.070134

Rakhra, M., Gopinadh, G., Addepalli, N. S., Singh, G., Aliraja, S., Reddy, V. S. G., & Reddy, M. N. (2021). E-Commerce Assistance with a Smart Chatbot using Artificial Intelligence. Proceedings of 2021 2nd International Conference on Intelligent Engineering and Management, ICIEM 2021, 144–148. https://doi.org/10.1109/ICIEM51511.2021.9445316

Reddy Karri, S. P., & Santhosh Kumar, B. (2020). Deep learning techniques for implementation of chatbots. 2020 International Conference on Computer Communication and Informatics, ICCCI 2020, 20–24. https://doi.org/10.1109/ICCCI48352.2020.9104143

Rosyadi, H. E., Amrullah, F., Marcus, R. D., & Affandi, R. R. (2020). Rancang Bangun Chatbot Informasi Lowongan Pekerjaan Berbasis Whatsapp dengan Metode NLP ( Natural Language Processing ). BRILIANT: Jurnal Riset Dan Konseptual, 5(1), 619–626.

Tamizharasi, B., Jenila Livingston, L. M., & Rajkumar, S. (2021). Building a medical chatbot using support vector machine learning algorithm. Journal of Physics: Conference Series, 1716(1). https://doi.org/10.1088/1742-6596/1716/1/012059

Wardani, S., Darmawiguna, I. G. M., & Sugihartini, N. (2019). Usability Testing Sesuai Dengan ISO 9241-11 Pada Sistem Informasi Program Pengalaman Lapangan Universitas Pendidikan Ganesha Ditinjau Dari Pengguna Mahasiswa. Kumpulan Artikel Mahasiswa Pendidikan Teknik Informatika (KARMAPATI), 8(2), 356. https://doi.org/10.23887/karmapati.v8i2.18400

Wibowo, B., Clarissa, H., & Suhartono, D. (2020). The Application of Chatbot for Customer Service in E-Commerce. Engineering, MAthematics and Computer Science (EMACS) Journal, 2(3), 91–95. https://doi.org/10.21512/emacsjournal.v2i3.6531

Wijanarko, R., & Afrianto, I. (2020). Rancang Bangun Aplikasi Chatbot Media Informasi Parenting Pola Asuh Anak Menggunakan Line. Matrix : Jurnal Manajemen Teknologi Dan Informatika, 10(1), 1–10. https://doi.org/10.31940/matrix.v10i1.1805

Zhang, J., Zhang, J., Ma, S., Yang, J., & Gui, G. (2020). Chatbot design method using hybrid word vector expression model based on real telemarketing data. KSII Transactions on Internet and Information Systems, 14(4), 1400–1418. https://doi.org/10.3837/TIIS.2020.04.001

Downloads

Published

2025-01-31

How to Cite

Zamakhsyari, F. (2025). E-commerce Service Chatbot Application Design using KNN and Random Forest Methods. JISKA (Jurnal Informatika Sunan Kalijaga), 10(1), 100–109. https://doi.org/10.14421/jiska.2025.10.1.100-109