E-commerce Service Chatbot Application Design using KNN and Random Forest Methods
DOI:
https://doi.org/10.14421/jiska.2025.10.1.100-109Keywords:
Chatbot, E-Commerce, NLP, KNN, Random ForestAbstract
Our lives are profoundly shaped by technology, with the expansion of e-commerce being a notable outcome that demands attention. Given the prevalence of smartphones equipped with rapid messaging and networking applications, individuals often utilize these platforms to communicate with sellers, offering a convenient means for sellers to efficiently engage with a diverse customer base. Recognizing this trend, there arises a necessity for the digital transformation of services to enhance operational efficiency. In response to this need, the researcher has developed a chatbot application aimed at improving customer service, employing machine learning techniques with the KNN and Random Forest algorithms. To assess the application's viability, the chatbot's results undergo an accuracy test, revealing a satisfactory accuracy value of 71.4%, thereby affirming its feasibility.
References
Ahmad, G. N., Ullah, S., Algethami, A., Fatima, H., & Akhter, S. M. H. (2022). Comparative Study of Optimum Medical Diagnosis of Human Heart Disease Using Machine Learning Technique with and Without Sequential Feature Selection. IEEE Access, 10, 23808–23828. https://doi.org/10.1109/ACCESS.2022.3153047
Astuti, R. N., & Fatchan, M. (2019). Perancangan Aplikasi Teknologi Chatbot Untuk Industri Komersial 4.0. Prosiding Seminar Nasional Teknologi Dan Sains (SNasTekS), 1(1), 339–348.
Chandra, A. Y., Kurniawan, D., & Musa, R. (2020). Perancangan Chatbot Menggunakan Dialogflow Natural Language Processing (Studi Kasus: Sistem Pemesanan pada Coffee Shop). Jurnal Media Informatika Budidarma, 4(1), 208. https://doi.org/10.30865/mib.v4i1.1505
Fachreza, M. R. D., Suhartono, S., & Yaqin, M. A. (2023). Klasifikasi Sentimen Masyarakat Terhadap Proses Pemindahan Ibu Kota Negara (IKN) Indonesia pada Media Sosial Twitter Menggunakan Metode Naïve Bayes. JISKA (Jurnal Informatika Sunan Kalijaga), 8(3), 243–251. https://doi.org/10.14421/jiska.2023.8.3.243-251
Intan, P. K. (2019). Comparison of Kernel Function on Support Vector Machine in Classification of Childbirth. Jurnal Matematika “MANTIK,” 5(2), 90–99. https://doi.org/10.15642/mantik.2019.5.2.90-99
Jadhav, S. S., & Kalita, P. C. (2019). Design Thinking Approach in Planning E-commerce for Domestic Plumbing Services. ACM International Conference Proceeding Series, 20–24. https://doi.org/10.1145/3385061.3385067
Kumar, R., & Ali, M. M. (2020). A Review on Chatbot Design and Implementation Techniques. International Research Journal of Engineering and Technology, 2791–2800. https://www.researchgate.net/publication/348569890
Mathew, R. B., Varghese, S., Joy, S. E., & Alex, S. S. (2019). Chatbot for disease prediction and treatment recommendation using machine learning. Proceedings of the International Conference on Trends in Electronics and Informatics, ICOEI 2019, Icoei, 851–856. https://doi.org/10.1109/ICOEI.2019.8862707
Mohey, D. (2016). Enhancement Bag-of-Words Model for Solving the Challenges of Sentiment Analysis. International Journal of Advanced Computer Science and Applications, 7(1), 244–252. https://doi.org/10.14569/ijacsa.2016.070134
Rakhra, M., Gopinadh, G., Addepalli, N. S., Singh, G., Aliraja, S., Reddy, V. S. G., & Reddy, M. N. (2021). E-Commerce Assistance with a Smart Chatbot using Artificial Intelligence. Proceedings of 2021 2nd International Conference on Intelligent Engineering and Management, ICIEM 2021, 144–148. https://doi.org/10.1109/ICIEM51511.2021.9445316
Reddy Karri, S. P., & Santhosh Kumar, B. (2020). Deep learning techniques for implementation of chatbots. 2020 International Conference on Computer Communication and Informatics, ICCCI 2020, 20–24. https://doi.org/10.1109/ICCCI48352.2020.9104143
Rosyadi, H. E., Amrullah, F., Marcus, R. D., & Affandi, R. R. (2020). Rancang Bangun Chatbot Informasi Lowongan Pekerjaan Berbasis Whatsapp dengan Metode NLP ( Natural Language Processing ). BRILIANT: Jurnal Riset Dan Konseptual, 5(1), 619–626.
Tamizharasi, B., Jenila Livingston, L. M., & Rajkumar, S. (2021). Building a medical chatbot using support vector machine learning algorithm. Journal of Physics: Conference Series, 1716(1). https://doi.org/10.1088/1742-6596/1716/1/012059
Wardani, S., Darmawiguna, I. G. M., & Sugihartini, N. (2019). Usability Testing Sesuai Dengan ISO 9241-11 Pada Sistem Informasi Program Pengalaman Lapangan Universitas Pendidikan Ganesha Ditinjau Dari Pengguna Mahasiswa. Kumpulan Artikel Mahasiswa Pendidikan Teknik Informatika (KARMAPATI), 8(2), 356. https://doi.org/10.23887/karmapati.v8i2.18400
Wibowo, B., Clarissa, H., & Suhartono, D. (2020). The Application of Chatbot for Customer Service in E-Commerce. Engineering, MAthematics and Computer Science (EMACS) Journal, 2(3), 91–95. https://doi.org/10.21512/emacsjournal.v2i3.6531
Wijanarko, R., & Afrianto, I. (2020). Rancang Bangun Aplikasi Chatbot Media Informasi Parenting Pola Asuh Anak Menggunakan Line. Matrix : Jurnal Manajemen Teknologi Dan Informatika, 10(1), 1–10. https://doi.org/10.31940/matrix.v10i1.1805
Zhang, J., Zhang, J., Ma, S., Yang, J., & Gui, G. (2020). Chatbot design method using hybrid word vector expression model based on real telemarketing data. KSII Transactions on Internet and Information Systems, 14(4), 1400–1418. https://doi.org/10.3837/TIIS.2020.04.001
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Fardan Zamakhsyari

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Authors who publish with this journal agree to the following terms as stated in http://creativecommons.org/licenses/by-nc/4.0
a. Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
b. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
c. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.