Comparison of KNN and Random Forest Algorithms on E-Commerce Service Chatbot

Authors

  • Fardan Zamakhsyari STT Cahaya Surya
  • Bagas Adi Makayasa UIN Sunan Kalijaga Yogyakarta
  • R. Abudullah Hamami UIN Sunan Kalijaga Yogyakarta
  • Muhammad Tulus Akbar UIN Sunan Kalijaga Yogyakarta
  • Andi Cahyono Universitas Sains dan Teknologi Indonesia
  • Amirullah Amirullah UIN Sunan Kalijaga Yogyakarta
  • Muhammad Zida Hisyamuddin UIN Sunan Kalijaga Yogyakarta
  • Maria Ulfah Siregar UIN Sunan Kalijaga Yogyakarta

DOI:

https://doi.org/10.14421/jiska.2025.10.1.100-109

Keywords:

Chatbot, E-Commerce, NLP, KNN, Random Forest

Abstract

Technology heavily influences our lives, with the expansion of e-commerce being an important outcome that demands attention. Given the prevalence of smartphones equipped with messaging apps and fast networks, people often utilize these platforms to communicate with sellers, offering a convenient way for sellers to engage efficiently with a diverse customer base. Recognizing this trend, there is a need for digital transformation of services to improve operational efficiency. Thus, this study aimed to compare the efficiency of classification algorithms in e-commerce service chatbots. The researcher used machine learning techniques with KNN and Random Forest algorithms in this case. To assess the feasibility of the application, the chatbot results will be tested using the confusion matrix method to assess accuracy. From this study, it was obtained that the KNN method and calculating word weight using TF-IDF produces an accuracy value of 71.4%, thus confirming its feasibility.

References

Ahmad, G. N., Ullah, S., Algethami, A., Fatima, H., & Akhter, S. Md. H. (2022). Comparative Study of Optimum Medical Diagnosis of Human Heart Disease Using Machine Learning Technique With and Without Sequential Feature Selection. IEEE Access, 10, 23808–23828. https://doi.org/10.1109/ACCESS.2022.3153047

Astuti, R. N., & Fatchan, M. (2019). Perancangan Aplikasi Teknologi Chatbot Untuk Industri Komersial 4.0. Prosiding Seminar Nasional Teknologi Dan Sains (SNasTekS), 1(1), 339–348. https://journal.unusida.ac.id/index.php/snts/article/view/103

Baykara, B., & Güngör, T. (2022). Abstractive text summarization and new large-scale datasets for agglutinative languages Turkish and Hungarian. Language Resources and Evaluation, 56(3), 973–1007. https://doi.org/10.1007/s10579-021-09568-y

Bird, J. J., Ekárt, A., & Faria, D. R. (2023). Chatbot Interaction with Artificial Intelligence: human data augmentation with T5 and language transformer ensemble for text classification. Journal of Ambient Intelligence and Humanized Computing, 14(4), 3129–3144. https://doi.org/10.1007/s12652-021-03439-8

Chandra, A. Y., Kurniawan, D., & Musa, R. (2020). Perancangan Chatbot Menggunakan Dialogflow Natural Language Processing (Studi Kasus: Sistem Pemesanan pada Coffee Shop). Jurnal Media Informatika Budidarma, 4(1), 208. https://doi.org/10.30865/mib.v4i1.1505

Dogan, T., & Uysal, A. K. (2020). A novel term weighting scheme for text classification: TF-MONO. Journal of Informetrics, 14(4), 101076. https://doi.org/10.1016/j.joi.2020.101076

Fachreza, Moch. R. D., Suhartono, S., & Yaqin, M. A. (2023). Klasifikasi Sentimen Masyarakat Terhadap Proses Pemindahan Ibu Kota Negara (IKN) Indonesia pada Media Sosial Twitter Menggunakan Metode Naïve Bayes. JISKA (Jurnal Informatika Sunan Kalijaga), 8(3), 243–251. https://doi.org/10.14421/jiska.2023.8.3.243-251

Hoekstra, O., Hurst, W., & Tummers, J. (2022). Healthcare related event prediction from textual data with machine learning: A Systematic Literature Review. Healthcare Analytics, 2, 100107. https://doi.org/10.1016/j.health.2022.100107

Intan, P. K. (2019). Comparison of Kernel Function on Support Vector Machine in Classification of Childbirth. Jurnal Matematika “MANTIK,” 5(2), 90–99. https://doi.org/10.15642/mantik.2019.5.2.90-99

Jadhav, S. S., & Kalita, P. Ch. (2019). Design Thinking Approach in Planning E-commerce for Domestic Plumbing Services. Proceedings of the 2019 International Conference on E-Business and E-Commerce Engineering, 20–24. https://doi.org/10.1145/3385061.3385067

Jiang, M., Liang, Y., Feng, X., Fan, X., Pei, Z., Xue, Y., & Guan, R. (2018). Text classification based on deep belief network and softmax regression. Neural Computing and Applications, 29(1), 61–70. https://doi.org/10.1007/s00521-016-2401-x

Kumar, R., & Ali, M. M. (2020). A Review on Chatbot Design and Implementation Techniques. International Research Journal of Engineering and Technology (IRJET), 7(2), 2791–2800. https://www.irjet.net/archives/V7/i2/IRJET-V7I2592.pdf

Li, Q., & Zhang, Y. (2023). Improved Text Matching Model Based on BERT. Frontiers in Computing and Intelligent Systems, 2(3), 40–43. https://doi.org/10.54097/fcis.v2i3.5209

Mathew, R. B., Varghese, S., Joy, S. E., & Alex, S. S. (2019). Chatbot for Disease Prediction and Treatment Recommendation using Machine Learning. 2019 3rd International Conference on Trends in Electronics and Informatics (ICOEI), 851–856. https://doi.org/10.1109/ICOEI.2019.8862707

Mohey, D. (2016). Enhancement Bag-of-Words Model for Solving the Challenges of Sentiment Analysis. International Journal of Advanced Computer Science and Applications, 7(1), 244–252. https://doi.org/10.14569/IJACSA.2016.070134

Nugraha, K. A., & Sebastian, D. (2021). Chatbot Layanan Akademik Menggunakan K-Nearest Neighbor. Jurnal Sains Dan Informatika, 7(1), 11–19. https://doi.org/10.34128/jsi.v7i1.285

Rahardja, C. A., Juardi, T., & Agung, H. (2019). Implementasi Algoritma K-Nearest Neighbor pada Website Rekomendasi Laptop. Jurnal Buana Informatika, 10(1), 75–84. https://doi.org/10.24002/jbi.v10i1.1847

Rakhra, M., Gopinadh, G., Addepalli, N. S., Singh, G., Aliraja, S., Reddy, V. S. G., & Reddy, M. N. (2021). E-Commerce Assistance with a Smart Chatbot using Artificial Intelligence. 2021 2nd International Conference on Intelligent Engineering and Management (ICIEM), 144–148. https://doi.org/10.1109/ICIEM51511.2021.9445316

Reddy Karri, S. P., & Santhosh Kumar, B. (2020). Deep Learning Techniques for Implementation of Chatbots. 2020 International Conference on Computer Communication and Informatics (ICCCI), ICCCI(2020), 1–5. https://doi.org/10.1109/ICCCI48352.2020.9104143

Rizqullah, M. R., Purwarianti, A., & Aji, A. F. (2023). QASiNa: Religious Domain Question Answering Using Sirah Nabawiyah. 2023 10th International Conference on Advanced Informatics: Concept, Theory and Application (ICAICTA), 1–6. https://doi.org/10.1109/ICAICTA59291.2023.10390123

Rosyadi, H. E., Amrullah, F., Marcus, R. D., & Affandi, R. R. (2020). Rancang Bangun Chatbot Informasi Lowongan Pekerjaan Berbasis Whatsapp dengan Metode NLP (Natural Language Processing). Briliant: Jurnal Riset Dan Konseptual, 5(3), 619. https://doi.org/10.28926/briliant.v5i3.487

Singh, B., Olds, T., Brinsley, J., Dumuid, D., Virgara, R., Matricciani, L., Watson, A., Szeto, K., Eglitis, E., Miatke, A., Simpson, C. E. M., Vandelanotte, C., & Maher, C. (2023). Systematic review and meta-analysis of the effectiveness of chatbots on lifestyle behaviours. Npj Digital Medicine, 6(1), 118. https://doi.org/10.1038/s41746-023-00856-1

Sukmandhani, A. A., Lukas, Heryadi, Y., Suparta, W., & Wibowo, A. (2023). Classification Algorithm Analysis for Breast Cancer. E3S Web of Conferences, 388, 02012. https://doi.org/10.1051/e3sconf/202338802012

Tamizharasi, B., Jenila Livingston, L. M., & Rajkumar, S. (2020). Building a Medical Chatbot using Support Vector Machine Learning Algorithm. Journal of Physics: Conference Series, 1716(1), 012059. https://doi.org/10.1088/1742-6596/1716/1/012059

van Aken, B., Winter, B., Löser, A., & Gers, F. A. (2019). How Does BERT Answer Questions? Proceedings of the 28th ACM International Conference on Information and Knowledge Management, 1823–1832. https://doi.org/10.1145/3357384.3358028

Wang, G., Cao, L., Zhao, H., Liu, Q., & Chen, E. (2021). Coupling Macro-Sector-Micro Financial Indicators for Learning Stock Representations with Less Uncertainty. Proceedings of the AAAI Conference on Artificial Intelligence, 35(5), 4418–4426. https://doi.org/10.1609/aaai.v35i5.16568

Wibisono, A. B., & Fahrurozi, A. (2019). Perbandingan Algoritma Klasifikasi Dalam Pengklasifikasian Data Penyakit Jantung Koroner. Jurnal Ilmiah Teknologi Dan Rekayasa, 24(3), 161–170. https://doi.org/10.35760/tr.2019.v24i3.2393

Wibowo, B., Clarissa, H., & Suhartono, D. (2020). The Application of Chatbot for Customer Service in E-Commerce. Engineering, MAthematics and Computer Science (EMACS) Journal, 2(3), 91–95. https://doi.org/10.21512/emacsjournal.v2i3.6531

Wijanarko, R., & Afrianto, I. (2020). Rancang Bangun Aplikasi Chatbot Media Informasi Parenting Pola Asuh Anak Menggunakan Line. Matrix : Jurnal Manajemen Teknologi Dan Informatika, 10(1), 1–10. https://doi.org/10.31940/matrix.v10i1.1805

Yunanto, R., Wibowo, E. P., & Rianto, R. (2023). A Bert Model To Detect Provocative Hoax. Journal of Engineering Science and Technology, 18(5), 2281–2297. https://jestec.taylors.edu.my/Vol%2018%20Issue%205%20October%202023/18_5_03.pdf

Zhang, J., Zhang, J., Ma, S., Yang, J., & Gui, G. (2020). Chatbot Design Method Using Hybrid Word Vector Expression Model Based on Real Telemarketing Dat. KSII Transactions on Internet and Information Systems, 14(4), 1400–1418. https://doi.org/10.3837/tiis.2020.04.001

Downloads

Published

2025-01-31

How to Cite

Zamakhsyari, F., Makayasa, B. A., Hamami, R. A., Akbar, M. T., Cahyono, A., Amirullah, A., Hisyamuddin, M. Z., & Siregar, M. U. (2025). Comparison of KNN and Random Forest Algorithms on E-Commerce Service Chatbot. JISKA (Jurnal Informatika Sunan Kalijaga), 10(1), 100–109. https://doi.org/10.14421/jiska.2025.10.1.100-109