Artificial Intelligence Adoption and Financial Stability under Geopolitical Pressure: Evidence from Indonesia’s Digital Banking Sector
DOI:
https://doi.org/10.14421/jbmib.2025.0402-01Keywords:
Artificial Intelligence, Geopolitical Risk, Financial Stability, Digital Banking, Sensitivity AnalysisAbstract
Research Aims: This study investigates how Artificial Intelligence (AI) adoption and Geopolitical Risk Index (GPR) influence the financial stability of Indonesia’s digital banking sector, focusing on profitability (ROA) and credit risk (NPL).
Design/methodology/approach: Using annual panel data from 2021–2024 and employing regression and scenario-based simulations to evaluates both structural effects and conditional responses to varying GPR levels.
Research Findings: The findings reveal that higher AI adoption generally enhances profitability and reduces credit risk under low to moderate geopolitical risk. However, AI’s influence remains statistically insignificant, while GPR significantly decreases NPL, indicating conservative lending behaviorduring uncertainty. Operational efficiency and capital adequacy are identified as key internal factors influencing profitability.
Theoretical Contribution/Originality: This study contributes to the understanding of digital banking resilience by integrating econometric and simulation techniques, providing policy insights that emphasize adaptive credit risk frameworks, AI-driven risk management, and capital buffer adjustments amid geopolitical volatility.
Research limitation and implication: These findings imply that digital banks should prioritize strengthening operational efficiency and capital buffers, while leveraging AI adoption and GPR monitoring as supportive tools to mitigate potential pressures on profitability and credit quality.
This research model can be recalibrated using GPR data to predict NPL spikes and ROA decline.
Downloads
Abstract viewed: 101 times
|
PDF downloaded = 14 times
References
Adel, N., & Naili, M. (2024). Geopolitical risk and banking performance: evidence from emerging economies. Journal of Risk Finance , 25(4), 646–663. https://doi.org/10.1108/JRF-10-2023-0243
Agustiawan, D. A. (2024). Digital Banking Transformation AI Enhances Efficiency And Customer Experience Seminar Perspective Industry. WACANA: Jurnal Ilmiah Ilmu Komunikasi, 23(1), 191–200. https://doi.org/10.32509/wacana.v23i1.4130
Akter, S., Bandara, R., Hani, U., Fosso Wamba, S., Foropon, C., & Papadopoulos, T. (2019). Analytics-based decision-making for service systems: A qualitative study and agenda for future research. International Journal of Information Management, 48, 85–95. https://doi.org/10.1016/j.ijinfomgt.2019.01.020
Ali, M. A., Hussin, N., Haddad, H., Alkhodary, D., & Marei, A. (2021). Dynamic Capabilities and Their Impact on Intellectual Capital and Innovation Performance. Sustainability, 13(18), 10028. https://doi.org/10.3390/su131810028
Alt, R., Beck, R., & Smits, M. T. (2018). FinTech and the transformation of the financial industry. In Electronic Markets (Vol. 28, Issue 3, pp. 235–243). Springer Verlag. https://doi.org/10.1007/s12525-018-0310-9
Arner, D. W., Barberis, J., & Buckley, R. P. (2017). FINTECH AND REGTECH IN A NUTSHELL, AND THE FUTURE IN A SANDBOX. https://ssrn.com/abstract=3088303FinTech.indb218/07/175:27PMElectroniccopyavailableat:https://ssrn.com/abstract=3088303
Baker, S. R., Bloom, N., Davis, S. J., Jorring, A., Kost, K., Al-Kuwari, A., Biffar, S., Boehnke, J., Dashkeyev, V., Deriy, O., Dinh, E., Ezure, Y., Gong, R., Jindal, S., Kim, R., Klosin, S., Koh, J., Lajewski, P., Nebiyu, D., … Katz, L. (2016). Measuring Economic Policy Uncertainty. www.policyuncertainty.com
Bank, W. (2014). Global Financial Development Report 2014: Financial Inclusion. https://www.worldbank.org/en/publication/gfdr/gfdr-2014/overview
Banna, H., Alam, A., Alam, A. W., & Chen, X. H. (2023). Geopolitical Uncertainty and Banking Risk: International Evidence. https://doi.org/10.2139/ssrn.4325966
Behn, M., Lang, J. H., & Reghezza, A. (2025). 120 years of insight: Geopolitical risk and bank solvency. Economics Letters, 247, 112168. https://doi.org/10.1016/j.econlet.2025.112168
Bekaert, G. ;, Hoerova, M. ;, & Lo Duca, M. (2012). Standard-Nutzungsbedingungen. https://hdl.handle.net/10419/144441
Bhaskaran, M., & Sudhir, J. S. (2018). A study on latest trends in Banking Technology & Innovation. International Journal of Management Studies, V(4(3)), 38. https://doi.org/10.18843/ijms/v5i4(3)/06
Bhowmik, P. K., & Sarker, N. (2024). Non-performing loans (NPLs) and non-performance: evidence from South Asian banks. International Journal of Research in Business and Social Science (2147- 4478), 13(2), 197–206. https://doi.org/10.20525/ijrbs.v13i2.3235
Boug, P., Brasch, T. von, Cappelen, Å., Hammersland, R., Hungnes, H., Kolsrud, D., Skretting, J., Strøm, B., & Vigtel, T. C. (2023). Fiscal policy, macroeconomic performance and industry structure in a small open economy. Journal of Macroeconomics, 76. https://doi.org/10.1016/j.jmacro.2023.103524
Boungou, W., & Urom, C. (2025). Geopolitical tensions and banks’ stock market performance. Economics Letters, 247, 112093. https://doi.org/10.1016/j.econlet.2024.112093
Brynjolfsson, E., & McElheran, K. (2016). The rapid adoption of data-driven decision-making. American Economic Review, 106(5), 133–139. https://doi.org/10.1257/aer.p20161016
Bughin, J., Brussels, |, Hazan, E., Paris, |, Ramaswamy, S., Washington, |, Chui, M., Francisco, S., Allas, T., & London, |. (2017). ARTIFICIAL INTELLIGENCE THE NEXT DIGITAL FRONTIER? www.mckinsey.com/mgi.
Caldara, D., & Iacoviello, M. (2018). Measuring Geopolitical Risk. International Finance Discussion Papers, 2018.0(1222), 1–66. https://doi.org/10.17016/ifdp.2018.1222
Cerra, V., Fatas, A., & Saxena, S. C. (2021). Fighting the scarring effects of COVID-19. Industrial and Corporate Change, 30(2), 459–466. https://doi.org/10.1093/icc/dtab030
Chen, H., & Siklos, P. (2022). Crawford School of Public Policy CAMA Centre for Applied Macroeconomic Analysis Central bank digital currency: A review and some macro-financial implications CAMA Working Paper 12/2022 February 2022.
Choudhury, T. (2025). US sectors and geopolitical risk: The investor’s perspective. Finance Research Letters, 73, 106690. https://doi.org/10.1016/j.frl.2024.106690
DailySocial.id. (2023). Karim Siregar Iringi Jalan Bank Jago Sembari Bangun Talenta Engineering. https://news.dailysocial.id/tech-business/corporate/karim-siregar-iringi-jalan-bank-jago-sembari-bangun-talenta-engineering
de Boyrie, M. E., & Pavlova, I. (2025). Bank acquisitions of AI and FinTech: impact on performance. Managerial Finance, 51(5), 797–817. https://doi.org/10.1108/MF-04-2024-0314
Demma, C., Ferri, G., Orame, A., Pesic, V., & Vacca, V. (2024). Banks’ operational resilience during pandemics.
Deng, Q., & Karia, N. (2025). How ESG Performance Promotes Organizational Resilience: The Role of Ambidextrous Innovation Capability and Digitalization. Business Strategy & Development, 8(1). https://doi.org/10.1002/bsd2.70079
Eveland, J., & Tornatzky, L. G. (1990). Technological Innovation as a Process (pp. 27–50).
Ferdosi, B. J., & Tarek, M. M. (2019). Visual Verification and Analysis of Outliers Using Optimal Outlier Detection Result by Choosing Proper Algorithm and Parameter (pp. 507–517). https://doi.org/10.1007/978-981-13-1498-8_45
Feyen, E., Frost, J., Gambacorta, L., Natarajan, H., & Saal, M. (2021). BIS Papers No 117 Fintech and the digital transformation of financial services: implications for market structure and public policy. www.worldbank.org
Gallego-Gomez, C., & De-Pablos-Heredero, C. (2020). Artificial Intelligence as an Enabling Tool for the Development of Dynamic Capabilities in the Banking Industry. International Journal of Enterprise Information Systems, 16(3), 20–33. https://doi.org/10.4018/IJEIS.2020070102
H. Manukyan, H., & H. Parsyan, S. (2024). ARTIFICIAL INTELLIGENCE INTEGRATION ASSESSMENT IN BANKS THROUGH FINANCIAL REPORTING: CASE STUDY OF ARMENIA. Journal of Trends and Challenges in Artificial Intelligence, 1(1), 33–38. https://doi.org/10.61552/jai.2024.01.004
Hasan Fadhil AL-Thabhawee. (2025). ARTIFICIAL INTELLIGENCE AND ITS ROLE IN HUMAN RESOURCES MANAGEMENT. International Journal of Accounting, Management, Economics and Social Sciences (IJAMESC), 3(1), 1–20. https://doi.org/10.61990/ijamesc.v3i1.353
Hendry, D. F., & Pretis, F. (2023). Analysing differences between scenarios. International Journal of Forecasting, 39(2), 754–771. https://doi.org/10.1016/j.ijforecast.2022.02.004
Hong Trinh, H., & Phuong Tran, T. (2023). Global Banking Systems, Financial Stability and Uncertainty: How have countries coped with Geopolitical Risk? https://orcid.org/0000-0003-0209-7259.Electroniccopyavailableat:https://ssrn.com/abstract=4541043https://ssrn.com/abstract=4541043
Hossain, M. A., Agnihotri, R., Rushan, M. R. I., Rahman, M. S., & Sumi, S. F. (2022). Marketing analytics capability, artificial intelligence adoption, and firms’ competitive advantage: Evidence from the manufacturing industry. Industrial Marketing Management, 106, 240–255. https://doi.org/10.1016/j.indmarman.2022.08.017
Jacobs, B. I. (2004). Risk Avoidance and Market Fragility.
John D. Hunter. (2007). Matplotlib is a 2D graphics package used for Python for application development, interactive scripting, and publication-quality image generation across user interfaces and operating systems.
Jöhnk, J., Weißert, M., & Wyrtki, K. (2021). Ready or Not, AI Comes— An Interview Study of Organizational AI Readiness Factors. Business and Information Systems Engineering, 63(1), 5–20. https://doi.org/10.1007/s12599-020-00676-7
Kamalnath, V., Lerner, L., Moon, J., Sari, G., Sohoni, V., & Zhang, S. (2023). Capturing the full value of generative AI in banking. McKinsey & Company, December, 1–9.
Karimzadeh, M., & Sasouli, M. (2013). Contribution of Internet Banking toward Profitability of Banking in India. 9, 57–69. https://consensus.app/papers/contribution-of-internet-banking-toward-profitability-of-sasouli-karimzadeh/1283cb3228f15af3a180a31a4484222f/
Kompas.com. (2023). Bank Jago Manfaatkan AI untuk Pendaftaran Rekening Nasabah. https://money.kompas.com/read/2023/08/30/161000126/bank-jago-manfaatkan-ai-untuk-pendaftaran-rekening-nasabah
Kou, G., Chao, X., Peng, Y., Alsaadi, F. E., & Herrera-Viedma, E. (2019). MACHINE LEARNING METHODS FOR SYSTEMIC RISK ANALYSIS IN FINANCIAL SECTORS. Technological and Economic Development of Economy, 25(5), 716–742. https://doi.org/10.3846/tede.2019.8740
Kou, G., Chao, X., Peng, Y., & Wang, F. (2022). NETWORK RESILIENCE IN THE FINANCIAL SECTORS: ADVANCES, KEY ELEMENTS, APPLICATIONS, AND CHALLENGES FOR FINANCIAL STABILITY REGULATION. Technological and Economic Development of Economy, 28(2), 531–558. https://doi.org/10.3846/tede.2022.16500
Kurnia Yuniarti, Nurul Inayah, Fibby Luthfia, & Henny Setyo Lestari. (2024). The Influence Of Digitalization, Bank Specifications, And Macroeconomics On Indonesia’s Bank Performance. Jurnal Ekonomi, 29(2), 220–240. https://doi.org/10.24912/je.v29i2.2222
Lee, I., & Shin, Y. J. (2018). Fintech: Ecosystem, business models, investment decisions, and challenges. Business Horizons, 61(1), 35–46. https://doi.org/10.1016/j.bushor.2017.09.003
Li, J. C. F. (2020). Roles of individual perception in technology adoption at organization level: Behavioral model versus toe framework. Journal of System and Management Sciences, 10(3), 97–118. https://doi.org/10.33168/JSMS.2020.0308
Mikalef, P., Krogstie, J., & Giannakos, M. (2020). Information Systems and e-Business Management Big data analytics capabilities: A systematic literature review and research agenda Big data analytics capabilities: A systematic literature review and research agenda.
Nguyen, T. C., & Thuy, T. H. (2024). Bank wholesale funding in an era of rising geopolitical risk. The World Economy, 47(11), 4306–4330. https://doi.org/10.1111/twec.13620
OJK. (2022). Booklet Survei Nasional Literasi dan Inklusi Keuangan Tahun 2022.
OJK. (2023). Laporan Tahunan Perbankan dan Statistik Digital Banking Indonesia.
Oliveira, T., Thomas, M., & Espadanal, M. (2014). Assessing the determinants of cloud computing adoption: An analysis of the manufacturing and services sectors. Information & Management, 51(5), 497–510. https://doi.org/10.1016/j.im.2014.03.006
Omri, A. (2020). Technological innovation and sustainable development : Does the stage of development matter? Environmental Impact Assessment Review, 83, 106398. https://doi.org/10.1016/j.eiar.2020.106398
Öztürk, R., & Kula, V. (2021). A General Profile of Artificial Intelligence Adoption in Banking Sector. Journal of Corporate Governance, Insurance and Risk Management, 8(2), 146–157. https://doi.org/10.51410/jcgirm.8.2.10
Phan, D. H. B., Tran, V. T., & Iyke, B. N. (2022). Geopolitical risk and bank stability. Finance Research Letters, 46, 102453. https://doi.org/10.1016/j.frl.2021.102453
Pianosi, F., Beven, K., Freer, J., Hall, J. W., Rougier, J., Stephenson, D. B., & Wagener, T. (2016). Sensitivity analysis of environmental models: A systematic review with practical workflow. In Environmental Modelling and Software (Vol. 79, pp. 214–232). Elsevier Ltd. https://doi.org/10.1016/j.envsoft.2016.02.008
Rauf, S., & Qiang, F. (2014). The Integrated Model to Measure the Impact of E-Banking on Commercial Bank Profitability: Evidence from Pakistan. Asian Journal of Research in Banking and Finance, 4, 25–45. https://consensus.app/papers/the-integrated-model-to-measure-the-impact-of-ebanking-on-qiang-rauf/5e09ef4e51c750169c675a3dc4d70881/
Rolando, S., & Mulyono, B. (2024). Penerapan Kecerdasan Buatan pada Perbankan di Indonesia: Sebuah Tinjauan Sistematis. Jurnal Manajemen Dan Sistem Informasi Abadi, 5(1), 22–35. https://abadiinstitute.org/index.php/JUMAS/article/view/244
Saltelli, A., Tarantola, S., Campolongo, F., & Ratto, M. (2010). Sensitivity Analysis in Practice : A Guide to Assessing Scientific Models.
Saputra, D. R., & Hardjono, K. R. (2024). Strategic adaptation and dynamic capability in the digital banking sector: a case study of SeaBank’s financial performance 2021-2022. 1(1), 39–50.
Sarazin, G., Morio, J., Lagnoux, A., Balesdent, M., & Brevault, L. (2019). Sensitivity Analysis of Risk Assessment with Data-Driven Dependence Modeling. https://doi.org/10.3850/978-981-11-2724-3
Setiawan, R., & Prakoso, L. (2024). DIGITAL BANKING ADOPTION, BANK SIZE, AND BANK PERFORMANCE IN INDONESIA. Jurnal Ekonomi Dan Bisnis Airlangga, 34(2), 196–207. https://doi.org/10.20473/jeba.v34i22024.196-207
Shaban, O. S., & Al-Hawatmah, Z. (2024). THE IMPACT OF BANKING FINANCIAL LEVERAGE ON FIRM’S PERFORMANCE: THE MODERATING ROLE OF ARTIFICIAL INTELLIGENCE. Risk Governance and Control: Financial Markets and Institutions, 14(2), 99–106. https://doi.org/10.22495/rgcv14i2p10
Sheriffdeen, K. (2024). Building Resilient Banking Systems : AI-Driven Risk Management and Crisis Response Building Resilient Banking Systems : AI-Driven Risk Management and Crisis Response.
Shuen, D. J. T. G. P. A. (n.d.). Dynamic Capabilities and Strategic Management. 1997.
Sulistyowati, Rahayu, Y. S., & Naja, C. D. (2023). Penerapan Artificial Intelligence Sebagai Inovasi Di Era Disrupsi Dalam Mengurangi Resiko Lembaga Keuangan Mikro Syariah. Wadiah, 7(2), 117–142. https://doi.org/10.30762/wadiah.v7i2.329
Teece, D. J. (2018). Business models and dynamic capabilities. Long Range Planning, 51(1), 40–49. https://doi.org/10.1016/j.lrp.2017.06.007
Vardalachakis, M., Tampouratzis, M., Papadakis, N., & Vasilakis, M. (2024). The Future of Privacy: A Review on AI’s Role in Shaping Data Security. 2024 5th International Conference in Electronic Engineering, Information Technology & Education (EEITE), 1–8. https://doi.org/10.1109/EEITE61750.2024.10654397
wael AL-khatib, A. (2023). Drivers of generative artificial intelligence to fostering exploitative and exploratory innovation: A TOE framework. Technology in Society, 75, 102403. https://doi.org/10.1016/j.techsoc.2023.102403
Wang, D., & Choi, H. (2023). The Effect of Consumer Resistance and Trust on the Intention to Accept Fully Autonomous Vehicles. Mobile Information Systems, 2023, 1–10. https://doi.org/10.1155/2023/3620148
Wilkinson, L., & Friendly, M. (2009). History corner the history of the cluster heat map. In American Statistician (Vol. 63, Issue 2, pp. 179–184). https://doi.org/10.1198/tas.2009.0033
Wooldridge. (2010). Econometric Analysis of Cross Section and Panel Data.
Yildirim, Y., & Sanyal, A. (2022). Evaluating the Effectiveness of Early Warning Indicators: An Application of Receiver Operating Characteristic Curve Approach to Panel Data. Scientific Annals of Economics and Business, 69(4), 557–597. https://doi.org/10.47743/saeb-2022-0025
Downloads
Published
Versions
- 2025-11-27 (4)
- 2025-11-27 (3)
- 2025-11-27 (2)
- 2025-11-20 (1)
How to Cite
Issue
Section
License
Copyright (c) 2025 Journal of Business Management and Islamic Banking

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.









