AI-Enhanced Risk-Return Optimization in Islamic and Conventional Banking Portfolios

Authors

  • Dyaghazi Abdurraffi Nixon UIN Sunan Kalijaga Yogyakarta
  • Hasan Al Banna UIN Sunan Kalijaga Yogyakarta

DOI:

https://doi.org/10.14421/EkBis.2025.9.1.2414

Keywords:

Value at Risk (VaR), Monte Carlo Simulation, Portfolio Optimization, Islamic Banking, Conventional Banking

Abstract

Portfolio risk assessment in Islamic versus conventional banking requires advanced analytical approaches due to complex market dynamics and regulatory differences. Traditional optimization methods often fail to capture non-linear relationships and volatility patterns inherent in these distinct banking sectors. This study introduces an AI-enhanced framework combining Monte Carlo simulation with Solver-based optimization to compare market risks and determine optimal portfolio weights between Islamic and conventional banking stocks. The methodological innovation lies in integrating Microsoft Excel's GRG nonlinear AI solver for real-time portfolio optimization, addressing limitations of conventional Markowitz models. Using 194 daily price observations from LQ45 and JII70 indices (January-October 2024), we analyzed four banking stocks (BRIS, BTPS, BBCA, BBRI) through Monte Carlo VaR simulation with 10,000 iterations and AI-driven optimization at 95% confidence level. Mann-Whitney tests confirmed significant differences between Islamic and conventional banking returns and risk profiles. Results reveal Islamic banking portfolios demonstrate significantly higher risk (VaR: -4.18%, potential loss: IDR 4,180,169) compared to conventional portfolios (VaR: -1.65%, potential loss: IDR 1,652,541). AI optimization yielded distinct allocation strategies: Islamic portfolio (45.4% BRIS, 54.5% BTPS) versus conventional portfolio (74.5% BBCA, 25.4% BBRI). This research provides the first AI-integrated comparative framework for Islamic-conventional banking risk analysis, offering quantitative evidence that challenges assumptions about Islamic banking stability. The study demonstrates practical applications of machine learning in portfolio management for emerging markets, providing actionable insights for different investor risk profiles while advancing methodological approaches in Islamic finance research.

Downloads

Download data is not yet available.
Abstract viewed: 250 times | PDF downloaded = 254 times

References

Anam, C., Chumaidi, M., & Muhyidin, Z. A. (2017). Analysis Value At Risk In Single Asset And Portfolio By Monte Carlo Simulation. IEESE International Journal of Science and Technology (IJSTE), 6(3), 16–24. https://www.ieese.org/vol6n3.php

Anita, P. S., & Riris, P. A. (2021). Risiko Pasar Saham Perbankan Syariah dengan Metode Standar Deviasi Markowitz dan Value At Risk (Var). Jurnal Manajemen, 12(1), 113–125. https://doi.org/10.32832/jm-uika.v12i1.4046

Bachrach, B., & Galai, D. (1979). The Risk-Return Relationship and Stock Prices. The Journal of Financial and Quantitative Analysis, 14(2), 421–441. https://doi.org/jstor.org/stable/2330512

Bodie, Z., Kane, A., Marcus, A. J., Switzer, L. N., Boyko, D., Panasian, C., & Stapleton, M. (2019). Investment (9th ed.). Mc Graw Hill.

Darman, S., Zukhri, N., Altin, D., Agung Nugroho, A., Daddy Setiawan, R., Fitari, T., & Thohari, M. (2023). Value At Risk Analysis Using Historical Method and Monte Carlo Simulation in Banking and Mining Sector Companies. International Journal of Applied Management and Business, 1(1), 26–31. https://doi.org/10.54099/ijamb.v1i1.436

Hashemi, S. H., Mousavi Dehghani, S. A., Samimi, S. E., Dinmohammad, M., & Hashemi, S. A. (2020). Performance comparison of GRG algorithm with evolutionary algorithms in an aqueous electrolyte system. Modeling Earth Systems and Environment, 6(4), 2103–2110. https://doi.org/10.1007/s40808-020-00818-6

Indarwati, E., & Kusumawati, R. (2021). Estimation of the Portfolio Risk from Conditional Value at Risk Using Monte Carlo Simulation. Jurnal Matematika, Statistika Dan Komputasi, 17(3), 370–380. https://doi.org/10.20956/j.v17i3.11340

Indonesia Stock Exchange. (2021). IDX Stock Index Handbook V1.2 (1st ed.). Indonesia Stock Exchange. www.idx.co.id

Jorion, P. (2007). Value at Risk : the New Benchmark for Managing Financial Risk (3rd ed.). McGraw Hill Professional.

Maneemaroj, P., Lonkani, R., & Chingchayanurak, C. (2021). Appropriate Expected Return and the Relationship with Risk. Global Business Review, 22(4), 865–878. https://doi.org/10.1177/0972150919830879

Nainggolan, Y. T., Juliana, A., & Alantina, C. A. (2020). Analisis Value at Risk Dalam Pembentukan Portofolio Optimal (Studi Kasus Perusahaan Perbankan di Indonesia). Jurnal Manajemen, 10(2), 124–136. https://doi.org/10.30656/jm.v10i2.2433

Nurul, H. A., & Raharjo, T. (2024). Comparative Analysis of Portfolio Performance Between Value Stocks and Growth Stocks During the Covid-19 Pandemic. Wiga : Jurnal Penelitian Ilmu Ekonomi, 14(1). https://doi.org/10.30741/wiga.v14i1.1189

Paningrum, D. (2022). Buku Referensi Investasi Pasar Modal (1st ed.). Lembaga Chakra Brahmanda Lentera. https://sites.google.com/view/penerbitcandle

Pasieczna, A. H. (2019). Monte Carlo simulation approach to calculate Value at Risk: application to WIG20 and mWIG40. Financial Sciences, 24(2), 61–75. https://doi.org/10.15611/fins.2019.2.05

Priyantono, V. R. A., Maruddani, D. A. I., & Utami, I. T. (2023). Analisis Portofolio Optimal Menggunakan Model Indeks Tunggal Dan Pengukuran Value at Risk Dengan Simulasi Monte Carlo (Studi Kasus: Exchange Traded Fund di Bursa Efek Indonesia Periode Januari 2021 – Juni 2022). Jurnal Gaussian, 12(2), 158–165. https://doi.org/10.14710/j.gauss.12.2.158-165

Rahman, W. K. (2024). Analisis Value at Risk (VaR) Pada Saham Sektor Perbankan Indonesia Dengan Metode Simulasi Monte Carlo. Jurnal Mahasiswa Teknik Informatika, 8(4), 5895–5899. https://doi.org/10.36040/jati.v8i4.10062

Ruppert, D. (2001). Statistics and finance: An introduction. Springer.

Smith, S., & Lasdon, L. (1992). Solving large sparse nonlinear programs using GRG. ORSA Journal on Computing, 4(1), 2–15. https://doi.org/10.1287/ijoc.4.1.2

Sugiyono. (2016). Metode Penelitian Pendidikan : Pendekatan Kuantitatif, Kualitatif, dan R&D. Alfabeta.

Vázquez, A., Briones, L., Morales, V., Iglesias, J., Morales, G., & Escola, J. M. (2021). Determination of The Optimal Distillation Sequence of A Ternary Mixture Incorporating Heat Integration by Means of Microsoft Excel Solver. Computer Applications in Engineering Education, 29(6), 1691–1701. https://doi.org/10.1002/cae.22417

Wulandari, J., Bagus Wardianto, K., & Efendi, N. (2023). Peningkatan Pengetahuan Investasi di Pasar Modal Pada Komunitas Muda Yasmin. GERVASI: Jurnal Pengabdian Kepada Masyarakat, 7(3), 1057–1066. https://doi.org/10.31571/gervasi.v7i3.6308

Downloads

Published

2025-06-02

How to Cite

Nixon, D. A., & Banna, H. A. (2025). AI-Enhanced Risk-Return Optimization in Islamic and Conventional Banking Portfolios. EkBis: Jurnal Ekonomi Dan Bisnis, 9(1), 22–36. https://doi.org/10.14421/EkBis.2025.9.1.2414