Sintesis dan Karakterisasi ZnO:Zr Melalui Metode Sol-Gel dengan Variasi Pelarut serta Uji Kinerjanya untuk Dye Sensitized Solar Cell

Main Article Content

Afia Ana Fadila
Didik Krisdiyanto

Abstract

Abstrak. Nanopartikel ZnO:Zr untuk semikonduktor DSSC telah disintesis melalui metode sol-gel dengan prekursor berupa Zn(CH3COO)2.2H2O dan ZrOCl2.8H2O. Doping Zr pada ZnO adalah sebesar 1%. Sintesis tersebut menggunakan pelarut berbeda, yaitu H2O, metanol, etanol dan isopropanol. Selanjutnya dilakukan studi terhadap struktur kristal berdasarkan karakterisasi menggunakan x-ray diffaction (XRD), energi celah pita (Eg) berdasarkan karakterisasi menggunakan spektrofotometer UV-Visibel dengan metode absorption spektrum fitting (ASF) dan morfologi ZnO:Zr dengan scanning electron microscopy (SEM) serta uji kinerja DSSC yang menggunakan ZnO:Zr hasil sintesis sebagai semikonduktor berdasarkan nilai tegangan yang dihasilkan. Berdasarkan analisis dengan XRD, difraktogram yang diperoleh sesuai dengan difraktogam standar ZnO heksagonal dengan pergeseran nilai 2θ menjadi lebih kecil sehingga nilai parameter kisi kristal heksagonal (a, c, dan L) material lebih besar dari parameter kisi kristal standar ZnO. Hal tersebut mengindikasikan terjadinya penyisipan Zr4+ yang jari-jari ioniknya lebih besar dari Zn2+ sehingga jarak antar atom dalam kisi kristal semakin besar tanpa mengubah struktur heksagonal ZnO. Nilai rata-rata parameter kisi kristal ZnO:Zr heksagonal yang berupa a, c dan L berturut-urut adalah 3,30 Å, 5,19 Å dan 10,04 Å. Berdasarkan data dari karakterisasi dengan spektrofotometer UV-Visibel yang diolah dengan metode ASF diketahui Eg ZnO:Zr yang dihasilkan dari penggunaan pelarut H2O, metanol, etanol dan isopropanol berturut-urut adalah 3,267 eV, 3,162 eV, 3,100 eV dan 3,176 eV. Eg tersebut mengkonfirmasi terjadinya penyisipan Zr4+ dalam kisi kristal karena nilainya lebih kecil dari Eg ZnO tanpa doping (3,34 eV). Citra SEM ZnO:Zr hasil sintesis menunjukkan bahwa penggunaan pelarut yang semakin tidak polar menghasilkan partikel dengan ukuran yang lebih kecil. Adapun urutan kinerja DSSC dari yang terbaik berdasarkan nilai tegangannya adalah DSSC yang menggunakan ZnO:Zr hasil sintesis dengan pelarut etanol (44,96 mV), air (42,41 mV), metanol (42,05 mV) dan isopropanol (35,89 mV).

Article Details

Section
Articles

References

Ali, A., Ambreen, S., Javed, R., Tabassum, S., ul Haq, I., Zia, M., 2017. ZnO Nanostructure Fabrication in Different Solvents Transforms Physio-Chemical, Biological and Photodegradable Properties. Mater. Sci. Eng. C 74, 137–145. https://doi.org/10.1016/j.msec.2017.01.004

Apostolopoulou, A., Karageorgopoulos, D., Rapsomanikis, A., Stathatos, E., 2015. DyeSensitized Solar Cells with Zinc Oxide Nanostructured Films Made with Amine Oligomers as Organic Templates and Gel Electrolytes. J. Clean Energy Technol. 4, 311– 315. https://doi.org/10.18178/JOCET.2016.4.5.303

Boudjouan, F., Chelouche, A., Touam, T., Djouadi, D., Ouerdane, Y., 2016. Influence of Pb Doping on The Structural, Morphological and Optical Properties of Sol-gel ZnO Films. Mater. Sci. Semicond. Process. 41, 382–389. https://doi.org/10.1016/j.mssp.2015.10.007

Boukaous, C., Telia, A., Horwat, D., Ghanem, S., Miska, P., 2014. Effect of Solvents on the Properties of ZnO Thin Layers Obtained by Sol Gel Dip Coating Process. J. New Technol. Mater. 4, 94–98.

Cavallo, C., Di Pascasio, F., Latini, A., Bonomo, M., Dini, D., 2017. Nanostructured Semiconductor Materials for Dye-Sensitized Solar Cells. J. Nanomater. 2017, e5323164. https://doi.org/10.1155/2017/5323164

Chergui, Y., Nehaoua, N., Mekki, D.E., 2011. Comparative Study of Dye-Sensitized Solar Cell Based on ZnO and TiO2 Nanostructures. Sol. Cells - Dye-Sensitized Devices. https://doi.org/10.5772/21452

Cherifi, Y., Chaouchi, A., Lorgoilloux, Y., Rguitu, M., Kadri, A., Courtois, C., 2016. Electrical, Dielectric and Photocatalytic Properties of Fedoped ZnO Nanomaterilas Synthesized by Sol Gel Method. Process. Appl. Ceram. 10, 125–135.

Coleman, V.., Jagadish, C., 2006. Basic Properties and Applications of ZnO. Elsevier Zinc Oxide Bulk Thin Films Nanostructures. Enderlein, R., Horing, N.J.., 1997. Fundamentals of Semicondctor Physics and Devices. World Scientific Publishing, Singapore.

Foo, K.., Kashif, M., Hashim, U., Liu, W.-W., 2014. Effect of Different Solvents on the Structural and Optical Properties of Zinc Oxide Thin Films for Optoelectronic Applications. Ceram. Int. 40, 753– 761. http://dx.doi.org/10.1016/j.ceramint.2013.06.065

Ghobadi, N., 2013. Band gap determination using absorption spectrum fitting procedure. Int. Nano Lett. 3, 2.

Hu, Q.R., Wang, S.L., Jiang, P., Xu, H., Zhang, Y., Tang, W.H., 2010. Synthesis of ZnO nanostructures in organic solvents and their photoluminescence properties. J. Alloys Compd. 496, 494–499.https://doi.org/10.1016/j.jallcom.2010.02.086

Kalyanasundaram, Kuppuswamy, 2010. Dye-Sensitized Solar Cells. EPFL press, Switzerland. Kalyanasundaram, K, 2010. Photochemical and Photoelectrochemical Approaches to Energy Conversion, in: Dye-Sensitized Solar Cell. EPFL Press, Switzerland.

Khoza, P.B., Moloto, M.J., Sikhwivhilu, L.M., 2012. The Effect of Solvents, Acetone, Water, and Ethanol, on the Morphological and Optical Properties of ZnO Nanoparticles Prepared by Microwave. J. Nanotechnol. 2012, 1–6. https://doi.org/10.1155/2012/195106

Marimuthu, T., Anandhan, N., Thangmuthu, R., Surya, S., 2016. Facile Growth of ZnO Nanowire Arrays and Nanoneedle Arrays with Flower Structure on ZnO-TiO2 Seed Layer for DSSC Applications.

Moezzi, A., McDonagh, A.M., Cortie, M.B., 2012. Zinc Oxide Particles: Synthesis, Properties and Applications. Chem. Eng. J. 185–186, 1–22. https://doi.org/10.1016/j.cej.2012.01.076

Munekawa, S., 1998. Application of X-Ray Diffraction Techniques to the Semiconductor Field. Rigaku J. 5, 31–34.

Murtaza, G., Ahmad, R., Rashid, M.S., Hassan, M., Hussnain, A., Khan, M.A., Ehsan ul Haq, M., Shafique, M.A., Riaz, S., 2014. Structural and Magnetic Studies on Zr Doped ZnO Diluted Magnetic Semiconductor. Curr. Appl. Phys. 14, 176–181. https://doi.org/10.1016/j.cap.2013.11.002

Narayan, M.R., 2011. Review: Dye sensitized Solar Cells Based on Natural Photosensitizers. Renew.Sustain. Energy Rev. https://doi.org/10.1016/j.rser.2011.07.148

Nielsen, R.H., Wilfing, G., 2012. Zirconium and Zirconium Compounds. Ullmanns Enclycopedia Ind. Chem. 39, 754–778. https://doi.org/10.1002/14356007.a28_543.pub2

Nugroho, D.., Akwalia, P.., Rahman, T.., Nofrizal, Ikono, R., Widayanto, W.., Sukarto, A., Siswanto, Rochman, N.., 2012. Pengaruh Variasi pH pada Sintesis Nanopartikel ZnO dengan Metode SolGel, in: Pertemuan Ilmiah Ilmu Pengetahuan Dan Teknologi Bahan. BATAN, Serpong.

Reddy, P.J., 2012. Solar Power Generation: Technology, New Concepts & Policy. Taylor & Francis Group, Boca Raton.

Saleh, S.M., Soliman, A.M., Sharaf, M.A., Kale, V., Gadgil, B., 2017. Influence of Solvent in The Synthesis of Nano-structured ZnO by Hydrothermal Method and Their Application in Solar-still. J. Environ. Chem. Eng. 5, 1219–1226. https://doi.org/10.1016/j.jece.2017.02.004

Saragi, T., Purba, Y.., Auffa, S.D.., Oktaviani, M., Susilawati, T., Bahtiar, A., 2016. Karakteristik Nanopartikel ZnO: Studi Efek Pelarut pada Proses Hidrotermal. J. Mater. Dan Energi Indones. 6, 31– 35.

Saurdi, I., Mamat, M.., Malek, M.., Rusop, M., 2014. Preparation of Aligned ZnO Nanorod Arrays on Sn-Doped ZnO Thin Films by Sonicated Sol-Gel Immersion Fabricated for Dye-Sensitized Solar Cell. Adv. Mater. Sci. Eng. 2014. http://dx.doi.org/10.1155/2014/636725

Sharma, D., Jha, R., 2017. Analysis of Structural, Optical and Magnetic Properties of Fe/Co codoped ZnO Nanocrystals. Ceram. Int. http://dx.doi.org/10.1016/j.ceramint.2017.03.201

Slamet, D., 2016. Sintesis Nanopartikel ZnO Doping Zirkonium Oksiklorida Produksi PSTA Batan Yogyakarta sebagai Semikonduktor Photo Anoda untuk Sel Surya Tersensitisasi Zat Warna (DSSC) (skripsi). UIN Sunan Kalijaga Yogyakarta.

Sugiyarto, K.H., Suyanti, R.D., 2010. Kimia Anorganik Logam. Graha Ilmu, Yogyakarta.

Swanson, H.E., Fuyat, R.K., 1953. Standard X-ray Diffraction Powder Patterns. National Bureau of Standard.

Talam, S., Karumuri, S.R., Gunnam, N., 2012. Synthesis, Characterization, and Spectroscopic Properties of ZnO Nanoparticles. Int. Sch. Res. Netw. Nanotechnol. https://doi.org/10.5402/2012/372505

Thirumoorthi, M., Prakash, J.T.J., 2016. Structure, Optical and Electrical Properties of Indium Tin Oxide Ultra Thin Films Prepared by Jet Nebulizer Spray Pyrolysis Technique. J. Asian Ceram. Soc. 4, 124–132. https://doi.org/10.1016/j.jascer.2016.01.001

Tsay, C.-Y., Fan, K.-S., 2008. Optimization of Zr-Doped ZnO Thin Films Prepared by Sol-Gel Method. Mater. Trans. 49. https://doi.org/10.2320/matertrans.MER2008111

Tsay, C.-Y., Lee, W.-C., 2013. Effect of Dopants on The Structural, Optical and Electrical Properties of Sol–gel Derived ZnO Semiconductor Thin Films. Curr. Appl. Phys. 13, 60–65. https://doi.org/10.1016/j.cap.2012.06.010

Ungula, J., Dejene, B.., 2015. Effect of Solvent Medium on the Structural, Morphological and Optical Properties of ZnO Nanoparticles Synthesized by Sol-Gel Method. Phys. B Phys. Condens. Matter. http://dx.doi.org/10.1016/j.physb.2015.10.007

William, A.V.L., Cesar, A.Q.S., Johann, A.H.S., 2011. The Chemistry and Physics of Dye-Sensitized Solar Cells, in: Solar Cells – Dye-Sensitized Devices. IntechOpen, pp. 399–418.

Yuwono, A.H., 2015. Fabrikasi Nanorod Seng Oksida (Zno) Menggunakan Metode Sol-Gel dengan Variasi Konsentrasi Polyethylene Glycol dan Waktu Tunda Evaporasi Amonia. Metalurgi 26, 101–108. https://doi.org/10.14203/mtl.v26i2.14