Deteksi Dini Mahasiswa Drop Out Menggunakan C5.0

Authors

  • Ulfi Saidata Aesyi Universitas Jenderal Achmad Yani Yogyakarta
  • Alfirna Rizqi Lahitani Universitas Jenderal Achmad Yani Yogyakarta
  • Taufaldisatya Wijatama Diwangkara Universitas Jenderal Achmad Yani Yogyakarta
  • Riyanto Tri Kurniawan Universitas Jenderal Achmad Yani Yogyakarta

DOI:

https://doi.org/10.14421/jiska.2021.6.2.113-119

Abstract

The decline in the number of active students also occurred at the Faculty of Engineering and Information Technology, Universitas Jenderal Achmad Yani. This greatly affects the profile of study program graduates. So it is necessary to have a system that is able to detect students who are threatened with dropping out early. In this study, the attributes chosen were the student's GPA and the percentage of attendance . This attribute is used to classify students who are predicted to drop out. The research data uses student data from the Faculty of Engineering and Information Technology, Universitas Jenderal Achmad Yani. This study uses the C5.0 algorithm to build a decision tree to assist data classification. The decision tree that was built with 304 data as training data resulted a C5.0 decision tree which had an error rate of 5%. The accuracy results obtained from the 76 test data is 93%.

References

Aesyi, U. S., Diwangkara, T. W., & Kurniawan, R. T. (2020). Diagnosa Penyakit Disk Hernia Dan Spondylolisthesis Menggunakan Algoritma C5. Telematika, 16(2), 81. https://doi.org/10.31315/telematika.v16i2.3181

Aesyi, U. S., & Wardoyo, R. (2019). Prediction of Length of Study of Student Applicants Using Case Based Reasoning. IJCCS (Indonesian Journal of Computing and Cybernetics Systems), 13(1), 11. https://doi.org/10.22146/ijccs.28076

Ahmadi, E., Weckman, G. R., & Masel, D. T. (2018). Decision making model to predict presence of coronary artery disease using neural network and C5.0 decision tree. Journal of Ambient Intelligence and Humanized Computing, 9(4), 999–1011. https://doi.org/10.1007/s12652-017-0499-z

Alban, M., & Mauricio, D. (2019). Predicting University Dropout trough Data Mining: A systematic Literature. Indian Journal of Science and Technology, 12(4), 1–12. https://doi.org/10.17485/ijst/2019/v12i4/139729

Cahyo, P. W. (2018). Klasterisasi Tipe Pembelajar Sebagai Parameter Evaluasi Kualitas Pendidikan Di Perguruan Tinggi. Teknomatika, 11(1), 49–55.

Gustian, D., & Hundayani, R. D. (2017). Combination of AHP Method with C4.5 in the level classification level out students. 2017 International Conference on Computing, Engineering, and Design (ICCED), 1–6. https://doi.org/10.1109/CED.2017.8308098

Kastawan, P. W., Wiharta, D. M., & Sudarma, M. (2018). Implementasi Algoritma C5.0 pada Penilaian Kinerja Pegawai Negeri Sipil. Majalah Ilmiah Teknologi Elektro, 17(3), 371. https://doi.org/10.24843/MITE.2018.v17i03.P11

Khasanah, A. U., & Harwati. (2017). A Comparative Study to Predict Student’s Performance Using Educational Data Mining Techniques. IOP Conference Series: Materials Science and Engineering, 215, 012036. https://doi.org/10.1088/1757-899X/215/1/012036

Morales, A. C., Amir, O., & Lee, L. (2017). Keeping It Real in Experimental Research—Understanding When, Where, and How to Enhance Realism and Measure Consumer Behavior. Journal of Consumer Research, 44(2), 465–476. https://doi.org/10.1093/jcr/ucx048

Mutrofin, S., Khalimi, A. M., Kurniawan, E., Ginardi, R. V. H., Fatichah, C., & Sari, Y. A. (2019). Detection of Potentially Students Drop Out of College in Case of Missing Value Using C4.5. 2019 International Conference on Sustainable Engineering and Creative Computing (ICSECC), 349–354. https://doi.org/10.1109/ICSECC.2019.8907014

Nia, F. Y., & Khalili, M. (2015). An efficient modeling algorithm for intrusion detection systems using C5.0 and Bayesian Network structures. 2015 2nd International Conference on Knowledge-Based Engineering and Innovation (KBEI), 1117–1123. https://doi.org/10.1109/KBEI.2015.7436203

Ojha, U., Jain, M., Jain, G., & Tiwari, R. K. (2017). Significance of important attributes for decision making using C5.0. 2017 8th International Conference on Computing, Communication and Networking Technologies (ICCCNT), 1–4. https://doi.org/10.1109/ICCCNT.2017.8204031

Putra, A. (2017). SOLUSI PREDIKSI MAHASISWA DROP OUT PADA PROGRAM STUDI SISTEM INFORMASI FAKULTAS ILMU KOMPUTER UNIVERSITAS BINA DARMA. Simetris: Jurnal Teknik Mesin, Elektro dan Ilmu Komputer, 8(1). https://doi.org/10.24176/simet.v8i1.893

Rajeswari, S., & Suthendran, K. (2019). C5.0: Advanced Decision Tree (ADT) classification model for agricultural data analysis on cloud. Computers and Electronics in Agriculture, 156, 530–539. https://doi.org/10.1016/j.compag.2018.12.013

Susanti, Y., Respatiwulan, Handajani, S. S., Pratiwi, H., Slamet, I., Hartatik, & Istiqomah, F. (2019). Classification of teak wood production in Central Java using the C5.0 algorithm. AIP Conference Proceedings, 2202(1), 020094. https://doi.org/10.1063/1.5141707

Sutanto, E. M. (2017). The influence of organizational learning capability and organizational creativity on organizational innovation of Universities in East Java, Indonesia. Asia Pacific Management Review, 22(3), 128–135. https://doi.org/https://doi.org/10.1016/j.apmrv.2016.11.002

Utari, M., Warsito, B., & Kusumaningrum, R. (2020). Implementation of Data Mining for Drop-Out Prediction using Random Forest Method. 2020 8th International Conference on Information and Communication Technology (ICoICT), 1–5. https://doi.org/10.1109/ICoICT49345.2020.9166276

Downloads

Published

2021-05-03

How to Cite

Aesyi, U. S., Lahitani, A. R., Diwangkara, T. W., & Kurniawan, R. T. (2021). Deteksi Dini Mahasiswa Drop Out Menggunakan C5.0. JISKA (Jurnal Informatika Sunan Kalijaga), 6(2), 113–119. https://doi.org/10.14421/jiska.2021.6.2.113-119

Issue

Section

Articles