Analisis Hashtag pada Twitter untuk Eksplorasi Pokok Bahasan Terkini Mengenai Business Intelligence

Authors

  • Arif Himawan Universitas Jenderal Achmad Yani Yogyakarta
  • Muhammad Rifqi Maarif Universitas Jenderal Achmad Yani Yogyakarta
  • Ulfi Saidata Aesyi Universitas Jenderal Achmad Yani Yogyakarta

DOI:

https://doi.org/10.14421/jiska.2021.6.2.106-112

Abstract

The main purpose of this paper is to examine the dominant topics about Business Intelligence in micro-blogging Twitter. There are 7.153 tweets collected from Twitter API. Text mining and natural language processing are used to analyze the dominant topics among those tweets. Computational method used to count the most frequent hashtag that appears together with Business Intelligence hashtag. Twitter users are large and scattered around the world with a diverse range of skills (expertise) that can give a new perspective on a subject that may not be predicted before. For example, for topics related to Business Intelligence, the very dominant general topic discussed in the scientific literature are about data management, as well as for analytics and machine learning data. The result contributes to understanding dominant topics about Business Intelligence that can help researchers to level their research.

References

Chongwatpol, J. (2016). Managing big data in coal-fired power plants: a business intelligence framework. Industrial Management & Data Systems, 116(8), 1779–1799. https://doi.org/10.1108/IMDS-11-2015-0473

Cluley, R., & Green, W. (2019). Social representations of marketing work: advertising workers and social media. European Journal of Marketing, 53(5), 830–847. https://doi.org/10.1108/EJM-12-2016-0682

Eidizadeh, R., Salehzadeh, R., & Chitsaz Esfahani, A. (2017). Analysing the role of business intelligence, knowledge sharing and organisational innovation on gaining competitive advantage. Journal of Workplace Learning, 29(4), 250–267. https://doi.org/10.1108/JWL-07-2016-0070

Garg, M., & Kumar, M. (2016). Review on event detection techniques in social multimedia. Online Information Review, 40(3), 347–361. https://doi.org/10.1108/OIR-08-2015-0281

Hellström, M., & Ramberg, U. (2019). Senior public leaders’ perceptions of business intelligence. International Journal of Public Leadership, 15(2), 113–128. https://doi.org/10.1108/IJPL-11-2018-0055

Hidayatullah, A. F., & Ma’arif, M. R. (2017). Pre-processing Tasks in Indonesian Twitter Messages. Journal of Physics: Conference Series, 801(1), 012072. https://doi.org/10.1088/1742-6596/801/1/012072

Kim, Y., Dwivedi, R., Zhang, J., & Jeong, S. R. (2016). Competitive intelligence in social media Twitter: iPhone 6 vs. Galaxy S5. Online Information Review, 40(1), 42–61. https://doi.org/10.1108/OIR-03-2015-0068

Labonte-LeMoyne, E., Leger, P.-M., Robert, J., Babin, G., Charland, P., & Michon, J.-F. (2017). Business intelligence serious game participatory development: lessons from ERPsim for big data. Business Process Management Journal, 23(3), 493–505. https://doi.org/10.1108/BPMJ-12-2015-0177

Mariani, M., Baggio, R., Fuchs, M., & Höepken, W. (2018). Business intelligence and big data in hospitality and tourism: a systematic literature review. International Journal of Contemporary Hospitality Management, 30(12), 3514–3554. https://doi.org/10.1108/IJCHM-07-2017-0461

Muniasamy, A., Tabassam, S., Hussain, M. A., Sultana, H., Muniasamy, V., & Bhatnagar, R. (2020). Deep Learning for Predictive Analytics in Healthcare. In Advances in Intelligent Systems and Computing (Vol. 921, hal. 32–42). Springer Verlag. https://doi.org/10.1007/978-3-030-14118-9_4

Nogueira, I. D., Romdhane, M., & Darmont, J. (2018). Modeling Data Lake Metadata with a Data Vault. Proceedings of the 22nd International Database Engineering & Applications Symposium on - IDEAS 2018, 253–261. https://doi.org/10.1145/3216122.3216130

Park, S. B., Jang, J., & Ok, C. M. (2016). Analyzing Twitter to explore perceptions of Asian restaurants. Journal of Hospitality and Tourism Technology, 7(4), 405–422. https://doi.org/10.1108/JHTT-08-2016-0042

Ratia, M., Myllärniemi, J., & Helander, N. (2018). The new era of business intelligence. Meditari Accountancy Research, 26(3), 531–546. https://doi.org/10.1108/MEDAR-08-2017-0200

Scholtz, B., Calitz, A., & Haupt, R. (2018). A business intelligence framework for sustainability information management in higher education. International Journal of Sustainability in Higher Education, 19(2), 266–290. https://doi.org/10.1108/IJSHE-06-2016-0118

Shi, S., Wang, Q., Xu, P., & Chu, X. (2016). Benchmarking State-of-the-Art Deep Learning Software Tools. 2016 7th International Conference on Cloud Computing and Big Data (CCBD), 99–104. https://doi.org/10.1109/CCBD.2016.029

Swan, M. (2018). Blockchain for Business: Next-Generation Enterprise Artificial Intelligence Systems. In Advances in Computers (Vol. 111, hal. 121–162). Academic Press Inc. https://doi.org/10.1016/bs.adcom.2018.03.013

Voigt, P., & von dem Bussche, A. (2017). The EU General Data Protection Regulation (GDPR). In Information Governance Alliance. Springer International Publishing. https://doi.org/10.1007/978-3-319-57959-7

Vujošević, D., Kovačević, I., & Vujošević-Janičić, M. (2019). The learnability of the dimensional view of data and what to do with it. Aslib Journal of Information Management, 71(1), 38–53. https://doi.org/10.1108/AJIM-05-2018-0125

Yingjie, L., Deng, S., & Pan, T. (2019). Does usage of enterprise social media affect employee turnover? Empirical evidence from Chinese companies. Internet Research, 29(4), 970–992. https://doi.org/10.1108/INTR-03-2018-0140

Yusuf, M. (2014). Metode Penelitian Kuantitatif, Kualitatif & Penelitian Gabungan (4 ed.). Kencana.

Downloads

Published

2021-05-03

How to Cite

Himawan, A., Maarif, M. R., & Aesyi, U. S. (2021). Analisis Hashtag pada Twitter untuk Eksplorasi Pokok Bahasan Terkini Mengenai Business Intelligence. JISKA (Jurnal Informatika Sunan Kalijaga), 6(2), 106–112. https://doi.org/10.14421/jiska.2021.6.2.106-112

Issue

Section

Articles