Analisis Hashtag pada Twitter untuk Eksplorasi Pokok Bahasan Terkini Mengenai Business Intelligence


  • Arif Himawan Universitas Jenderal Achmad Yani Yogyakarta
  • Muhammad Rifqi Maarif Universitas Jenderal Achmad Yani Yogyakarta
  • Ulfi Saidata Aesyi Universitas Jenderal Achmad Yani Yogyakarta



The main purpose of this paper is to examine the dominant topics about Business Intelligence in micro-blogging Twitter. There are 7.153 tweets collected from Twitter API. Text mining and natural language processing are used to analyze the dominant topics among those tweets. Computational method used to count the most frequent hashtag that appears together with Business Intelligence hashtag. Twitter users are large and scattered around the world with a diverse range of skills (expertise) that can give a new perspective on a subject that may not be predicted before. For example, for topics related to Business Intelligence, the very dominant general topic discussed in the scientific literature are about data management, as well as for analytics and machine learning data. The result contributes to understanding dominant topics about Business Intelligence that can help researchers to level their research.


Chongwatpol, J. (2016). Managing big data in coal-fired power plants: a business intelligence framework. Industrial Management & Data Systems, 116(8), 1779–1799.

Cluley, R., & Green, W. (2019). Social representations of marketing work: advertising workers and social media. European Journal of Marketing, 53(5), 830–847.

Eidizadeh, R., Salehzadeh, R., & Chitsaz Esfahani, A. (2017). Analysing the role of business intelligence, knowledge sharing and organisational innovation on gaining competitive advantage. Journal of Workplace Learning, 29(4), 250–267.

Garg, M., & Kumar, M. (2016). Review on event detection techniques in social multimedia. Online Information Review, 40(3), 347–361.

Hellström, M., & Ramberg, U. (2019). Senior public leaders’ perceptions of business intelligence. International Journal of Public Leadership, 15(2), 113–128.

Hidayatullah, A. F., & Ma’arif, M. R. (2017). Pre-processing Tasks in Indonesian Twitter Messages. Journal of Physics: Conference Series, 801(1), 012072.

Kim, Y., Dwivedi, R., Zhang, J., & Jeong, S. R. (2016). Competitive intelligence in social media Twitter: iPhone 6 vs. Galaxy S5. Online Information Review, 40(1), 42–61.

Labonte-LeMoyne, E., Leger, P.-M., Robert, J., Babin, G., Charland, P., & Michon, J.-F. (2017). Business intelligence serious game participatory development: lessons from ERPsim for big data. Business Process Management Journal, 23(3), 493–505.

Mariani, M., Baggio, R., Fuchs, M., & Höepken, W. (2018). Business intelligence and big data in hospitality and tourism: a systematic literature review. International Journal of Contemporary Hospitality Management, 30(12), 3514–3554.

Muniasamy, A., Tabassam, S., Hussain, M. A., Sultana, H., Muniasamy, V., & Bhatnagar, R. (2020). Deep Learning for Predictive Analytics in Healthcare. In Advances in Intelligent Systems and Computing (Vol. 921, hal. 32–42). Springer Verlag.

Nogueira, I. D., Romdhane, M., & Darmont, J. (2018). Modeling Data Lake Metadata with a Data Vault. Proceedings of the 22nd International Database Engineering & Applications Symposium on - IDEAS 2018, 253–261.

Park, S. B., Jang, J., & Ok, C. M. (2016). Analyzing Twitter to explore perceptions of Asian restaurants. Journal of Hospitality and Tourism Technology, 7(4), 405–422.

Ratia, M., Myllärniemi, J., & Helander, N. (2018). The new era of business intelligence. Meditari Accountancy Research, 26(3), 531–546.

Scholtz, B., Calitz, A., & Haupt, R. (2018). A business intelligence framework for sustainability information management in higher education. International Journal of Sustainability in Higher Education, 19(2), 266–290.

Shi, S., Wang, Q., Xu, P., & Chu, X. (2016). Benchmarking State-of-the-Art Deep Learning Software Tools. 2016 7th International Conference on Cloud Computing and Big Data (CCBD), 99–104.

Swan, M. (2018). Blockchain for Business: Next-Generation Enterprise Artificial Intelligence Systems. In Advances in Computers (Vol. 111, hal. 121–162). Academic Press Inc.

Voigt, P., & von dem Bussche, A. (2017). The EU General Data Protection Regulation (GDPR). In Information Governance Alliance. Springer International Publishing.

Vujošević, D., Kovačević, I., & Vujošević-Janičić, M. (2019). The learnability of the dimensional view of data and what to do with it. Aslib Journal of Information Management, 71(1), 38–53.

Yingjie, L., Deng, S., & Pan, T. (2019). Does usage of enterprise social media affect employee turnover? Empirical evidence from Chinese companies. Internet Research, 29(4), 970–992.

Yusuf, M. (2014). Metode Penelitian Kuantitatif, Kualitatif & Penelitian Gabungan (4 ed.). Kencana.




How to Cite

Himawan, A., Maarif, M. R., & Aesyi, U. S. (2021). Analisis Hashtag pada Twitter untuk Eksplorasi Pokok Bahasan Terkini Mengenai Business Intelligence. JISKA (Jurnal Informatika Sunan Kalijaga), 6(2), 106–112.