Analisis Perbandingan Algoritma Decision Tree, kNN, dan Naive Bayes untuk Prediksi Kesuksesan Start-up
DOI:
https://doi.org/10.14421/jiska.2021.6.3.178-188Keywords:
Decision Tree, kNN, Naive Bayes, Classification, Start-upAbstract
Start-ups have a very important role in economic growth, the existence of a start-up can open up many new jobs. However, not all start-ups that are developing can become successful start-ups. This is because start-ups have a high failure rate, data shows that 75% of start-ups fail in their development. Therefore, it is important to classify the successful and failed start-ups, so that later it can be used to see the factors that most influence start-up success, and can also predict the success of a start-up. Among the many classifications in data mining, the Decision Tree, kNN, and Naïve Bayes algorithms are the algorithms that the authors chose to classify the 923 start-up data records that were previously obtained. The test results using cross-validation and T-test show that the Decision Tree Algorithm is the most appropriate algorithm for classifying in this case study. This is evidenced by the accuracy value obtained from the Decision Tree algorithm, which is greater than other algorithms, which is 79.29%, while the kNN algorithm has an accuracy value of 66.69%, and Naive Bayes is 64.21%.
References
Afdi, Z., & Purwanggono, B. (2017). Perancangan Strategi berbasis Metodologi Lean Startup untuk Mendorong Pertumbuhan Perusahaan Rintisan berbasis Teknologi di Indonesia. Industrial Engineering Online, 6(4), 1–13.
Anam, C., & Santoso, H. B. (2018). Perbandingan Kinerja Algoritma C4.5 dan Naive Bayes untuk Klasifikasi Penerima Beasiswa. Jurnal Ilmiah Ilmu-Ilmu Teknik, 8(1), 13–19.
Blank, S. (2013, May). Why the Lean Start-Up Changes Everything. Harvard Business Review. https://hbr.org/2013/05/why-the-lean-start-up-changes-everything
Dellermann, D., Ebel, P., Lipusch, N., Popp, K. M., & Leimeister, J. M. (2017). Finding the Unicorn: Predicting Early Stage Startup Success Through a Hybrid Intelligence Method. International Conference on Information Systems (ICIS), 1–12. https://doi.org/https://dx.doi.org/10.2139/ssrn.3159123
Glupker, J., Nair, V., Richman, B., Riener, K., & Sharma, A. (2019). Predicting investor success using graph theory and machine learning. Journal of Investment Management, 17(1), 92–103.
Gupta, S., Pienta, R., Tamersoy, A., Chau, D. H., & Basole, R. C. (2015). Identifying Successful Investors in the Startup Ecosystem. Proceedings of the 24th International Conference on World Wide Web, 39–40. https://doi.org/10.1145/2740908.2742743
Hastuti, K. (2012). Analisis Komparasi Algoritma Klasifikasi Data Mining untuk Prediksi Mahasiswa Non Aktif. Seminar Nasional Teknologi Informasi & Komunikasi Terapan 2012, 14(1), 241–249.
Huda, F. A. (2013). t-Test.
Kadafi, A. R. (2018). Perbandingan Algoritma Klasifikasi Untuk Penjurusan Siswa SMA. Jurnal ELTIKOM, 2(2), 67–77. https://doi.org/10.31961/eltikom.v2i2.86
Krisandi, N., Helmi, & Prihando, B. (2015). Acute toxicity of zinc oxide nanoparticles and bulk ZnCl2 to rats. In Information Technology (Vol. 2, Issue 1, pp. 123–126). CRC Press. https://doi.org/10.1201/b18776-23
Lakshmi, B. N., Indumathi, T. S., & Ravi, N. (2016). A Study on C.5 Decision Tree Classification Algorithm for Risk Predictions During Pregnancy. Procedia Technology, 24, 1542–1549. https://doi.org/10.1016/j.protcy.2016.05.128
Lukito, Y., & Chrismanto, A. R. (2015). Perbandingan Metode-Metode Klasifikasi untuk Indoor Positioning System. Jurnal Teknik Informatika Dan Sistem Informasi, 1(2), 123–131. https://doi.org/10.28932/jutisi.v1i2.373
Marutho, D. (2019). Perbandingan Metode Naive Bayes , KNN , Decision Tree Pada Laporan Water Level Jakarta. Manajemen Informatika AMIK JTC Semarang, 15(2), 90–97. https://doi.org/https://doi.org/10.53845/infokam.v15i2.175
Praningki, T., & Budi, I. (2018). Sistem Prediksi Penyakit Kanker Serviks Menggunakan CART, Naive Bayes, dan k-NN. Creative Information Technology Journal, 4(2), 83. https://doi.org/10.24076/citec.2017v4i2.100
Rahman, M. A., Hidayat, N., & Afif Supianto, A. (2018). Komparasi Metode Data Mining K-Nearest Neighbor Dengan Naïve Bayes Untuk Klasifikasi Kualitas Air Bersih (Studi Kasus PDAM Tirta Kencana Kabupaten Jombang). Jurnal Pengembangan Teknologi Informasi Dan Ilmu Komputer, 2(12), 6346–6353.
Sabna, E., & Muhardi, M. (2016). Penerapan Data Mining Untuk Memprediksi Prestasi Akademik Mahasiswa Berdasarkan Dosen, Motivasi, Kedisiplinan, Ekonomi, dan Hasil Belajar. Jurnal CoreIT: Jurnal Hasil Penelitian Ilmu Komputer Dan Teknologi Informasi, 2(2), 41. https://doi.org/10.24014/coreit.v2i2.2392
Setiyorini, T., & Asmono, R. T. (2018). Komparasi Metode Decision Tree, Naive Bayes Dan K-Nearest Neighbor Pada Klasifikasi Kinerja Siswa. Jurnal Techno Nusa Mandiri, 15(2), 85. https://doi.org/10.33480/techno.v15i2.889
Wibisono, A. B., & Fahrurozi, A. (2019). PERBANDINGAN ALGORITMA KLASIFIKASI DALAM PENGKLASIFIKASIAN DATA PENYAKIT JANTUNG KORONER. Jurnal Ilmiah Teknologi Dan Rekayasa, 24(3), 161–170. https://doi.org/10.35760/tr.2019.v24i3.2393
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Adhitya Prayoga Permana, Kurniyatul Ainiyah, Khadijah Fahmi Hayati Holle
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Authors who publish with this journal agree to the following terms as stated in http://creativecommons.org/licenses/by-nc/4.0
a. Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
b. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
c. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.