Klasifikasi Ulasan Fasilitas Publik Menggunakan Metode Naïve Bayes dengan Seleksi Fitur Chi-Square


  • Adhitya Prayoga Permana UIN Maulana Malik Ibrahim Malang
  • Totok Chamidy UIN Maulana Malik Ibrahim Malang
  • Cahyo Crysdian UIN Maulana Malik Ibrahim Malang




Sentiment Analysis, Public Facility, Google Maps Reviews, Naïve Bayes, Chi-Square Feature Selection


Government builds public facilities to support the needs of the community. The use of these public facilities needs to be re-evaluated, and one way to do it is through community response. Google Maps is one platform that receives the most responses from the community about location. Google Maps Reviews allow us to see how the public reacts to a location. Naïve Bayes method is used for classification in this study because it is one of the simple methods in machine learning that can be easily applied to several experiments conducted by the author. In the classification process, reviews produce many features that will be calculated based on their class. More features generated, more features processed too in the system. Chi-Square feature selection will be used to reduce features that have low dependence on the system. In this study, performance values will be calculated based on the experimental use of feature ratios of 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, and 100%. The results show that the use of 10% Chi-Square features produces the best performance, with an accuracy rate of 86.94%, precision of 80.42%, recall of 80.42%, and f-measure of 80.42%.


Aziz, K. E., Crysdian, C., & Imamudin, M. (2021). Identification of Student Academic Performance in Computer Science Based on Naive Bayes. MATICS, 13(1), 33–41. https://doi.org/10.18860/mat.v13i1.9726

Baskoro, S. E., Suhartono, S., Chamidy, T., & Zaman, S. (2022). Pengujian akurasi model regresi logistik multinomial untuk memprediksi keberhasilan mahasiswa di perguruan tinggi menggunakan r. Fair Value: Jurnal Ilmiah Akuntansi Dan Keuangan, 5(3), 1551–1565. https://doi.org/10.32670/fairvalue.v5i3.2472

Dulhare, U. N. (2018). Prediction system for heart disease using Naive Bayes and particle swarm optimization. Biomedical Research (India), 29(12), 2646–2649. https://doi.org/10.4066/BIOMEDICALRESEARCH.29-18-620

Faisal, M., Nugroho, F., Sulthan, M. M. El, Amini, F., Hariyadi, M. A., & Sedayu, A. (2020). Plagiarism Detection Using Manber and Winnowing Algorithm. International Journal of Advanced Science and Technology, 29(6s), 2130–2136. http://sersc.org/journals/index.php/IJAST/article/view/10924

Han, J., & Kamber, M. (2001). Data Mining: Concepts and Techniques (3rd ed.). Morgan Kaufmann.

Harahap, F., Harahap, A. Y. N., Ekadiansyah, E., Sari, R. N., Adawiyah, R., & Harahap, C. B. (2018). Implementation of Naïve Bayes Classification Method for Predicting Purchase. 2018 6th International Conference on Cyber and IT Service Management (CITSM), 1–5. https://doi.org/10.1109/CITSM.2018.8674324

Irvantoro, D. (2019). Feature Selection Chi-Square N-Gram Naïve Bayes Classifier Review [Universitas Muhammadiyah Jember]. http://repository.unmuhjember.ac.id/7128/

Jurafsky, D., & Martin, J. H. (2023). Speech and Language Processing: An Introduction to Natural Language Processing, Computational Linguistics, and Speech Recognition (3rd ed.). Prentice Hall. https://web.stanford.edu/~jurafsky/slp3/ed3book.pdf

Linawati, S., Nurdiani, S., Handayani, K., & Latifah. (2020). Prediksi Prestasi Akademik Mahasiswa Menggunakan Algoritma Random Forest dan C4.5. 8(1), 6–13. https://doi.org/10.31294/jki.v8i1.7827

Liu, B. (2012). Sentiment Analysis and Opinion Mining. Synthesis Lectures on Human Language Technologies, 5(1), 1–167. https://doi.org/10.2200/S00416ED1V01Y201204HLT016

Huan Liu, & Setiono, R. (1995). Chi2: feature selection and discretization of numeric attributes. Proceedings of 7th IEEE International Conference on Tools with Artificial Intelligence, 388–391. https://doi.org/10.1109/TAI.1995.479783

Pratama, N. D., Sari, Y. A., & Adikara, P. P. (2018). Analisis Sentimen pada Review Konsumen Menggunakan Metode Naive Bayes dengan Seleksi Fitur Chi Square untuk Rekomendasi Lokasi Makanan Tradisional. Jurnal Pengembangan Teknologi Informasi Dan Ilmu Komputer, 2(9), 2982–2988. https://j-ptiik.ub.ac.id/index.php/j-ptiik/article/view/2494

Putri, L. A. A. R. (2018). Seleksi Fitur dalam Klasifikasi Genre Musik. Jurnal Ilmu Komputer, 10(1), 19–26. https://ojs.unud.ac.id/index.php/jik/article/view/39772

Russell, S., & Norvig, P. (1995). Artificial intelligence—a modern approach. In The Knowledge Engineering Review (Issue 1). Pearson Education. https://www.cambridge.org/core/product/identifier/S0269888900007724/type/journal_article

Ruz, G. A., Henríquez, P. A., & Mascareño, A. (2020). Sentiment analysis of Twitter data during critical events through Bayesian networks classifiers. Future Generation Computer Systems, 106, 92–104. https://doi.org/10.1016/j.future.2020.01.005

Sanders, R. (1987). THE PARETO PRINCIPLE: ITS USE AND ABUSE. Journal of Services Marketing, 1(2), 37–40. https://doi.org/10.1108/eb024706

Singh, G., Kumar, B., Gaur, L., & Tyagi, A. (2019). Comparison between Multinomial and Bernoulli Naïve Bayes for Text Classification. 2019 International Conference on Automation, Computational and Technology Management (ICACTM), 593–596. https://doi.org/10.1109/ICACTM.2019.8776800

Xu, G., Meng, Y., Qiu, X., Yu, Z., & Wu, X. (2019). Sentiment Analysis of Comment Texts Based on BiLSTM. IEEE Access, 7, 51522–51532. https://doi.org/10.1109/ACCESS.2019.2909919




How to Cite

Permana, A. P., Chamidy, T., & Crysdian, C. (2023). Klasifikasi Ulasan Fasilitas Publik Menggunakan Metode Naïve Bayes dengan Seleksi Fitur Chi-Square. JISKA (Jurnal Informatika Sunan Kalijaga), 8(2), 112–124. https://doi.org/10.14421/jiska.2023.8.2.112-124