Segmentasi Pelanggan Penjualan Online Menggunakan Metode K-means Clustering
DOI:
https://doi.org/10.14421/jiska.2024.9.1.1-9Keywords:
Customer Segmentation, Online Sales, E-Commerce, K-means Clustering, ClusteringAbstract
Customer segmentation is an essential strategy in the online selling industry to understand customer preferences and behavior. This article proposes applying the K-means clustering method in online sales customer segmentation. The method used is the descriptive method. The steps of the research method include literature studies and data processing to be analyzed using the K-means clustering method. The K-means clustering method is then applied to customer data to group it based on relevant attributes. The segmentation results are evaluated and scored using the clustering evaluation metric. The main objective is to explain the use of the K-means clustering method in online sales customer segmentation, focusing on obtaining more profound insights into customer behavior. Efficient customer segmentation allows companies to target customer groups more precisely and efficiently. This article provides practical insights and guidance for e-commerce companies in implementing customer segmentation using K-means clustering to increase efficiency in targeting segmented customers.
References
Angelie, A. V. (2017). Segmentasi Pelanggan Menggunakan Clustering K-Means dan Model RFM (Studi Kasus: PT. Bina Adidaya Surabaya) [Institut Teknologi Sepuluh Nopember]. https://repository.its.ac.id/42240/
Chandra, M. D., Irawan, E., Saragih, I. S., Windarto, A. P., & Suhendro, D. (2021). Penerapan Algoritma K-Means dalam Mengelompokkan Balita yang Mengalami Gizi Buruk Menurut Provinsi. BIOS : Jurnal Teknologi Informasi Dan Rekayasa Komputer, 2(1), 30–38. https://doi.org/10.37148/bios.v2i1.19
Chen, D. (2015). Online Retail. UCI Machine Learning Repository.
Deng, Y. (2023). Specific Strategies for Innovating Marketing Models of E-commerce Enterprises in the Internet Era. Academic Journal of Business & Management, 5(13), 22–26. https://doi.org/10.25236/AJBM.2023.051304
Dewa, F. A., & Jatipaningrum, M. T. (2019). Segmentasi E-Commerce dengan Cluster K-Means dan Fuzzy C-Means. Jurnal Statistika Industri Dan Komputasi, 4(01), 53–67. https://doi.org/10.34151/STATISTIKA.V4I01.1054
Duo, J., Zhang, P., & Hao, L. (2021). A K-means Text Clustering Algorithm Based on Subject Feature Vector. Journal of Web Engineering, 20(6), 1935-1946–1935–1946. https://doi.org/10.13052/jwe1540-9589.20612
Febrianti, F., & Beni, S. (2023). Strategi Mempertahankan Loyalitas Pelanggan pada Usaha Kuliner di Kecamatan Bengkayang. Inovasi Pembangunan : Jurnal Kelitbangan, 11(02), 189–210. https://doi.org/10.35450/jip.v11i02.384
Ghosh, S., & Kumar, S. (2013). Comparative Analysis of K-Means and Fuzzy C-Means Algorithms. International Journal of Advanced Computer Science and Applications, 4(4). https://doi.org/10.14569/IJACSA.2013.040406
Gupta, G. K., Agrawal, D., Singh, R. K., & Arya, R. K. (2013). Prevalence, Risk Factors and Socio Demographic Co-Relates of Adolescent Hypertension in District Ghaziabad. Indian Journal of Community Health, 25(3), 293–298. https://www.iapsmupuk.org/journal/index.php/IJCH/article/view/331
Istiana, M. I. (2013). Segmentasi Pelanggan Menggunakan Algoritma K-Means Sebagai Dasar Strategi Pemasaran pada LAROIBA Seluler Oleh: Mike Indra Istiana [Universitas Dian Nuswantoro Semarang]. http://eprints.dinus.ac.id/12733/2/abstrak_12903.pdf
Kurniawati, I. Y. (2018). Segmentasi Pelanggan Menggunakan Clustering K-Means [Universitas 17 Agustus 1945]. http://repository.untag-sby.ac.id/868/
Bangoria, B., Mankad, N., & Pambhar, V. (2013). A survey on Efficient Enhanced K-Means Clustering Algorithm. International Journal for Scientific Research and Development, 1(9), 1756–1758. https://doi.org/10.2/JQUERY.MIN.JS
Nawangsih, I. (2023). Analisa Penjualan Produk Kosmetik Dengan Metode Algoritma K-Means Di Toko Erremy. Bulletin of Information Technology (BIT), 4(1), 140–145. https://doi.org/10.47065/bit.v4i1.468
Perdana, S. A., Florentin, S. F., & Santoso, A. (2022). Analisis Segmentasi Pelanggan Menggunakan K-Means Clustering Studi Kasus Aplikasi Alfagift. Sebatik, 26(2), 446–457. https://doi.org/10.46984/sebatik.v26i2.1991
Savitri, A. D., Bachtiar, F. A., & Setyawan, N. Y. (2018). Segmentasi Pelanggan Menggunakan Metode K-Means Clustering Berdasarkan Model RFM Pada Klinik Kecantikan (Studi Kasus: Belle Crown Malang). Jurnal Pengembangan Teknologi Informasi Dan Ilmu Komputer, 2(9), 2957–2966. https://j-ptiik.ub.ac.id/index.php/j-ptiik/article/view/2489
Brahmana, R. W. S., Mohammed, F. A., & Chairuang, K. (2020). Customer Segmentation Based on RFM Model Using K-Means, K-Medoids, and DBSCAN Methods. Lontar Komputer : Jurnal Ilmiah Teknologi Informasi, 11(1), 32. https://doi.org/10.24843/LKJITI.2020.v11.i01.p04
Zhang, Z., Ni, G., & Xu, Y. (2020). Comparison of Trajectory Clustering Methods based on K-means and DBSCAN. Proceedings of 2020 IEEE International Conference on Information Technology, Big Data and Artificial Intelligence, ICIBA 2020, 557–561. https://doi.org/10.1109/ICIBA50161.2020.9277214
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Candra Hafidz Ardana, Adlian Aldita Alif Aisyah Ainur Khoyum, Muhammad Faisal
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Authors who publish with this journal agree to the following terms as stated in http://creativecommons.org/licenses/by-nc/4.0
a. Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
b. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
c. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.