Klasifikasi Dokumen Tugas Akhir (Skripsi) Menggunakan K-Nearest Neighbor

Authors

  • Kitami Akromunnisa UIN Sunan Kalijaga Yogyakarta
  • Rahmat Hidayat

DOI:

https://doi.org/10.14421/jiska.2019.41-07

Abstract

Various scientific works from academicians such as theses, research reports, practical work reports and so forth are available in the digital version. However, in general this phenomenon is not accompanied by a growth in the amount of information or knowledge that can be extracted from these electronic documents. This study aims to classify the abstract data of informatics engineering thesis. The algorithm used in this study is K-Nearest Neighbor. Amount of data used 50 abstract data of Indonesian language, 454 data of English abstract and 504 title data. Each data is divided into training data and test data. Test data will be classified automatically with the classifier model that has been made. Based on the research conducted, the classification of the Indonesian essential data resulted in greater accuracy without going through a stemming process that had a 9: 1 ratio of 100.0% compared to an 8: 2 ratio of 90.0%, 7: 3 which was 80.0%, 6: 4 which is 60.0% and the data distribution using Kfold cross validation is 80.0%.

References

Efendi, Z., & Mustakim, M. (2017). Text Mining Classification Sebagai Rekomendasi Dosen Pembimbing Tugas Akhir Program Studi Sistem Informasi. In Seminar Nasional Teknologi Informasi Komunikasi dan Industri (pp. 235–242).

Gupta, N. (2012). Text mining for information retrieval.

Gupta, V., Lehal, G. S., & others. (2009). A survey of text mining techniques and applications. Journal of Emerging Technologies in Web Intelligence, 1(1), 60–76.

Hidayatullah, A. F. (2015). The Influence of Indonesian Stemming on Indonesian Tweet Sentiment Analysis. In Proceeding of International Conference on Electrical Engineering, Computer Science and Informatics (EECSI 2015). Palembang, Indonesia (Vol. 2, pp. 182–187).

Hidayatullah, A. F., & Ma’arif, M. R. (2016). Penerapan Text Mining dalam Klasifikasi Judul Skripsi. Jurnal Fakultas Hukum UII.

Lancaster, F. W. (1991). Indexing and abstracting in theory and practice. Library Association London.

Prilianti, K. R., & Wijaya, H. (2014). Aplikasi text mining untuk automasi penentuan tren topik skripsi dengan metode K-Means Clustering. Jurnal Cybermatika, 2(1).

Wiguna, I. (2011). LKP: Aplikasi Katalog Online untuk Pencarian Konten Buku dengan Metode Text Mining pada Perpustakaan Stikom Surabaya. STIKOM Surabaya.

Yuono, F. (2005). Pembuatan Aplikasi Mining untuk Pencarian Buku Koleksi Skripsi dengan Menggunakan Association Rules Analysis, Skripsi, Universitas Kristen Petra. Universitas Kristen Putra.

Downloads

Published

2019-05-29

How to Cite

Akromunnisa, K., & Hidayat, R. (2019). Klasifikasi Dokumen Tugas Akhir (Skripsi) Menggunakan K-Nearest Neighbor. JISKA (Jurnal Informatika Sunan Kalijaga), 4(1), 69–75. https://doi.org/10.14421/jiska.2019.41-07

Issue

Section

Articles