Klasifikasi Buah dan Sayuran Segar atau Busuk Menggunakan Convolutional Neural Network

Authors

  • Eka Aenun Nisa Munfaati Universitas Mercubuana Yogyakarta
  • Arita Witanti Universitas Mercu Buana

DOI:

https://doi.org/10.14421/jiska.2024.9.1.27-38

Keywords:

Convolutional Neural Network, Tensorflow, Classification, Fruits, Vegetables

Abstract

Fresh fruits and vegetables contain many nutrients, such as minerals, vitamins, antioxidants, and beneficial fiber, superior to those found in rotten or almost rotten produce. On the other hand, fruits and vegetables that are nearly spoiled or already rotten have significantly lost their nutritional value. Rotten produce also harbors bacteria and fungi that can lead to infections and food poisoning when consumed. Convolutional Neural Network (CNN) offers a programmable solution for classifying fresh and rotten fruits and vegetables. Image processing using the TensorFlow library is employed in this classification process. During testing on the training data, the CNN achieved an accuracy of 90.42%. In comparison, the validation accuracy reached 94.21% when using the SGD optimizer, 20 epochs, a batch size 16, and a learning rate of 0.01. For the testing data, the accuracy obtained was 80.83%.

References

Alfarizi, M. R. S., Al-farish, M. Z., Taufiqurrahman, M., Ardiansah, G., & Elgar, M. (2023). Penggunaan Python Sebagai Bahasa Pemrograman untuk Machine Learning dan Deep Learning. KARIMAH TAUHID, 2(1), 1–6. https://doi.org/10.30997/KARIMAHTAUHID.V2I1.7518

Apendi, S., Setianingsih, C., & Paryasto, M. W. (2023). Deteksi Bahasa Isyarat Sistem Isyarat Bahasa Indonesia Menggunakan Metode Single Shot Multibox Detector. EProceedings of Engineering, 10(1), 249–255. https://openlibrarypublications.telkomuniversity.ac.id/index.php/engineering/article/view/19322

Ayumi, V. (Vina), & Nurhaida, I. (Ida). (2021). Klasifikasi Chest X-Ray Images Berdasarkan Kriteria Gejala Covid-19 Menggunakan Convolutional Neural Network. Journal Scientific and Applied Informatics, 4(2), 147–153. https://doi.org/10.36085/JSAI.V4I2.1513

Baloch, A., & Khalique, A. (2022). Vegetables & Fruits fresh and Stale. Kaggle. https://www.kaggle.com/datasets/alibaloch/vegetables-fruits-fresh-and-stale

Gregori, D., French, M., Gallipoli, S., Lorenzoni, G., & Ghidina, M. (2019). Global, Regional, and National Levels of Fruit and Vegetable Consumption from the ROUND (WoRld Map of COnsUmption of Fruit and Vegetables and Nutrient Deficits) Project (P18-067-19). Current Developments in Nutrition, 3(Suppl 1), nzz039.P18-067-19. https://doi.org/10.1093/CDN/NZZ039.P18-067-19

Hawari, F. H., Fadillah, F., Alviandi, M. R., & Arifin, T. (2022). Klasifikasi Penyakit Tanaman Padi Menggunakan Algoritma CNN (Convolutional Neural Network). Jurnal Responsif : Riset Sains Dan Informatika, 4(2), 184–189. https://doi.org/10.51977/JTI.V4I2.856

Iswantoro, D., & UN, D. H. (2022). Klasifikasi Penyakit Tanaman Jagung Menggunakan Metode Convolutional Neural Network (CNN). Jurnal Ilmiah Universitas Batanghari Jambi, 22(2), 900. https://doi.org/10.33087/jiubj.v22i2.2065

Jafaruddin, N. (2023). Pola Hidup Sehat dengan Konsumsi Buah dan Sayur. Abdimas Galuh, 5(1), 569–577. https://doi.org/10.25157/AG.V5I1.9919

Magalhães, B., Gaspar, P. D., Corceiro, A., João, L., & Bumba, C. (2022). Fuzzy Logic Decision Support System to Predict Peaches Marketable Period at Highest Quality. Climate 2022, Vol. 10, Page 29, 10(3), 29. https://doi.org/10.3390/CLI10030029

Mahaputri, C., Kristian, Y., & Setyati, E. (2022). Pengenalan Makanan Tradisional Indonesia Beserta Bahan-bahannya dengan Memanfaatkan DCNN Transfer Learning. INSYST: Journal of Intelligent System and Computation, 4(2), 61–68. https://doi.org/10.52985/INSYST.V4I2.252

Mulyanto, A., Susanti, E., Rossi, F., Wajiran, W., & Borman, R. I. (2021). Penerapan Convolutional Neural Network (CNN) pada Pengenalan Aksara Lampung Berbasis Optical Character Recognition (OCR). JEPIN (Jurnal Edukasi Dan Penelitian Informatika), 7(1), 52–57. https://doi.org/10.26418/JP.V7I1.44133

Qotrunnada, Mufida, F., & Utomo, P. H. (2022). Metode Convolutional Neural Network untuk Klasifikasi Wajah Bermasker. PRISMA, Prosiding Seminar Nasional Matematika, 5, 799–807. https://journal.unnes.ac.id/sju/index.php/prisma/article/view/54602

Rarastiti, C. N. (2022). Hubungan Pengetahuan Gizi Seimbang dengan Konsumsi Buah dan Sayur pada Remaja. Jurnal Penelitian Inovatif, 2(2), 281–288. https://doi.org/10.54082/JUPIN.80

Sya’ban, D. R., Hamzah, A., & Susanti, E. (2022). Klasifikasi Buah Segar dan Busuk Menggunakan Algoritma Convolutional Neural Network Dengan TFLite Sebagai Media Penerapan Model Machine Learning. PROSIDING SNAST, F7-16. https://doi.org/10.34151/PROSIDINGSNAST.V8I1.4180

Wulandari, I., Yasin, H., & Widiharih, T. (2020). Klasifikasi Citra Digital Bumbu dan Rempah dengan Algoritma Convolutional Neural Network (CNN). Jurnal Gaussian, 9(3), 273–282. https://doi.org/10.14710/J.GAUSS.9.3.273-282

Downloads

Published

2024-01-25

How to Cite

Munfaati, E. A. N., & Witanti, A. (2024). Klasifikasi Buah dan Sayuran Segar atau Busuk Menggunakan Convolutional Neural Network. JISKA (Jurnal Informatika Sunan Kalijaga), 9(1), 27–38. https://doi.org/10.14421/jiska.2024.9.1.27-38