Improving Stock Price Prediction Accuracy with StacBi LSTM

Authors

  • Mohammad Diqi Universitas Respati Yogyakarta
  • Hamzah Hamzah Universitas Respati Yogyakarta

DOI:

https://doi.org/10.14421/jiska.2024.9.1.10-26

Keywords:

Stock Price Prediction, Stacked Bidirectional LSTM, Time Series Analysis, Indonesian Stock Exchange, Input Sequence Length

Abstract

This research aimed to enhance stock price prediction accuracy using the Stacked Bidirectional Long Short-Term Memory (StacBi LSTM) model. The study addressed the challenge of capturing long-term dependencies and temporal patterns inherent in stock price data. The research objectives were to evaluate the model's performance across different input sequence lengths and identify the optimal length for prediction. Leveraging a dataset from the Indonesian Stock Exchange, the model's predictions were evaluated using key metrics such as RMSE, MAE, MAPE, and R2. Results indicated that the StacBi LSTM model excelled in capturing stock price trends and demonstrated strengths over traditional methods. The optimal input sequence length was identified, balancing computational efficiency and prediction accuracy. This research contributes valuable insights into improving stock price prediction techniques and offers practical implications for traders and investors. Future research directions encompass hybrid models and integrating external factors to enhance predictive capabilities further.

References

Ahmad, I., Wang, X., Zhu, M., Wang, C., Pi, Y., Khan, J. A., Khan, S., Samuel, O. W., Chen, S., & Li, G. (2022). EEG-Based Epileptic Seizure Detection via Machine/Deep Learning Approaches: A Systematic Review. Computational Intelligence and Neuroscience, 2022, 1–20. https://doi.org/10.1155/2022/6486570

Aydin, M., Pata, U. K., & Inal, V. (2022). Economic policy uncertainty and stock prices in BRIC countries: evidence from asymmetric frequency domain causality approach. Applied Economic Analysis, 30(89), 114–129. https://doi.org/10.1108/AEA-12-2020-0172/FULL/PDF

Baek, J.-W., & Chung, K. (2023). Multi-Context Mining-Based Graph Neural Network for Predicting Emerging Health Risks. IEEE Access, 11, 15153–15163. https://doi.org/10.1109/ACCESS.2023.3243722

Brahma, B., & Wadhvani, R. (2020). Solar Irradiance Forecasting Based on Deep Learning Methodologies and Multi-Site Data. Symmetry, 12(11), 1830. https://doi.org/10.3390/sym12111830

Campbell, T., Dixon, K. W., Dods, K., Fearns, P., & Handcock, R. (2020). Machine Learning Regression Model for Predicting Honey Harvests. Agriculture, 10(4), 118. https://doi.org/10.3390/agriculture10040118

Choi, J.-E., & Shin, D. W. (2019). The roles of differencing and dimension reduction in machine learning forecasting of employment level using the FRED big data. Communications for Statistical Applications and Methods, 26(5), 497–506. https://doi.org/10.29220/CSAM.2019.26.5.497

Erizal, E., & Diqi, M. (2023). Performance Evaluation of Stock Prediction Models using EMAGRU. Applied Computer Science, 19(3), 160–173. https://doi.org/10.35784/acs-2023-30

Fathy, Y., Jaber, M., & Brintrup, A. (2021). Learning With Imbalanced Data in Smart Manufacturing: A Comparative Analysis. IEEE Access, 9, 2734–2757. https://doi.org/10.1109/ACCESS.2020.3047838

Gao, Y., Lian, J., & Gong, B. (2018). Automatic classification of refrigerator using doubly convolutional neural network with jointly optimized classification loss and similarity loss. Eurasip Journal on Image and Video Processing, 2018(1), 1–11. https://doi.org/10.1186/S13640-018-0329-Z/FIGURES/9

Gutmann, S., Maget, C., Spangler, M., & Bogenberger, K. (2021). Truck Parking Occupancy Prediction: XGBoost-LSTM Model Fusion. Frontiers in Future Transportation, 2, 693708. https://doi.org/10.3389/ffutr.2021.693708

Htun, H. H., Biehl, M., & Petkov, N. (2023). Survey of feature selection and extraction techniques for stock market prediction. Financial Innovation, 9(1), 1–25. https://doi.org/10.1186/S40854-022-00441-7/FIGURES/3

Jamous, R., ALRahhal, H., & El-Darieby, M. (2021). A New ANN-Particle Swarm Optimization with Center of Gravity (ANN-PSOCoG) Prediction Model for the Stock Market under the Effect of COVID-19. Scientific Programming, 2021, 1–17. https://doi.org/10.1155/2021/6656150

Jiang, H., Fang, D., Spicher, K., Cheng, F., & Li, B. (2019). A New Period-Sequential Index Forecasting Algorithm for Time Series Data. Applied Sciences, 9(20), 4386. https://doi.org/10.3390/app9204386

Kim, B., Yuvaraj, N., Sri Preethaa, K. R., Hu, G., & Lee, D.-E. (2021). Wind-Induced Pressure Prediction on Tall Buildings Using Generative Adversarial Imputation Network. Sensors, 21(7), 2515. https://doi.org/10.3390/s21072515

Lind, A. P., & Anderson, P. C. (2019). Predicting drug activity against cancer cells by random forest models based on minimal genomic information and chemical properties. PLOS ONE, 14(7), e0219774. https://doi.org/10.1371/journal.pone.0219774

Lokanan, M. (2022). The determinants of investment fraud: A machine learning and artificial intelligence approach. Frontiers in Big Data, 5, 961039. https://doi.org/10.3389/FDATA.2022.961039/BIBTEX

Ma, S.-C., Chou, W., Chien, T.-W., Chow, J. C., Yeh, Y.-T., Chou, P.-H., & Lee, H.-F. (2020). An App for Detecting Bullying of Nurses Using Convolutional Neural Networks and Web-Based Computerized Adaptive Testing: Development and Usability Study. JMIR MHealth and UHealth, 8(5), e16747. https://doi.org/10.2196/16747

Miftahurrohmah, B., Wulandari, C., & Dharmawan, Y. S. (2021). Investment Modelling Using Value at Risk Bayesian Mixture Modelling Approach and Backtesting to Assess Stock Risk. Journal of Information Systems Engineering and Business Intelligence, 7(1), 11. https://doi.org/10.20473/jisebi.7.1.11-21

Mo, S., Lu, P., & Liu, X. (2022). AI-Generated Face Image Identification with Different Color Space Channel Combinations. Sensors, 22(21), 8228. https://doi.org/10.3390/s22218228

Musarat, M. A., Alaloul, W. S., Rabbani, M. B. A., Ali, M., Altaf, M., Fediuk, R., Vatin, N., Klyuev, S., Bukhari, H., Sadiq, A., Rafiq, W., & Farooq, W. (2021). Kabul River Flow Prediction Using Automated ARIMA Forecasting: A Machine Learning Approach. Sustainability, 13(19), 10720. https://doi.org/10.3390/su131910720

Naumoski, A., Arsov, S., & Cvetkoska, V. (2022). Asymmetric Information and Agency Cost of Financial Leverage and Corporate Investments: Evidence from Emerging South-East European Countries. Scientific Annals of Economics and Business, 69(2), 317–342. https://doi.org/10.47743/saeb-2022-0010

Pamir, Javaid, N., Akbar, M., Aldegheishem, A., Alrajeh, N., & Mohammed, E. A. (2022). Employing a Machine Learning Boosting Classifiers Based Stacking Ensemble Model for Detecting Non Technical Losses in Smart Grids. IEEE Access, 10, 121886–121899. https://doi.org/10.1109/ACCESS.2022.3222883

Pan, D., Zeng, A., Jia, L., Huang, Y., Frizzell, T., & Song, X. (2020). Early Detection of Alzheimer’s Disease Using Magnetic Resonance Imaging: A Novel Approach Combining Convolutional Neural Networks and Ensemble Learning. Frontiers in Neuroscience, 14, 501050. https://doi.org/10.3389/FNINS.2020.00259/BIBTEX

Patel, R. K., Kumari, A., Tanwar, S., Hong, W.-C., & Sharma, R. (2022). AI-Empowered Recommender System for Renewable Energy Harvesting in Smart Grid System. IEEE Access, 10, 24316–24326. https://doi.org/10.1109/ACCESS.2022.3152528

Qaddoura, R., M. Al-Zoubi, A., Faris, H., & Almomani, I. (2021). A Multi-Layer Classification Approach for Intrusion Detection in IoT Networks Based on Deep Learning. Sensors, 21(9), 2987. https://doi.org/10.3390/s21092987

Rajamoorthy, R., Saraswathi, H. V., Devaraj, J., Kasinathan, P., Elavarasan, R. M., Arunachalam, G., Mostafa, T. M., & Mihet-Popa, L. (2022). A Hybrid Sailfish Whale Optimization and Deep Long Short-Term Memory (SWO-DLSTM) Model for Energy Efficient Autonomy in India by 2048. Sustainability, 14(3), 1355. https://doi.org/10.3390/su14031355

Sekiguchi, Hayashi, Sugino, & Terada. (2019). The Effects of Differences in Individual Characteristics and Regional Living Environments on the Motivation to Immigrate to Hometowns: A Decision Tree Analysis. Applied Sciences, 9(13), 2748. https://doi.org/10.3390/app9132748

Shuai, C., Pan, Z., Gao, L., & Zuo, H. (2021). Short-Term Traffic Flow Prediction of Expressway: A Hybrid Method Based on Singular Spectrum Analysis Decomposition. Advances in Civil Engineering, 2021, 1–10. https://doi.org/10.1155/2021/4313970

Succetti, F., Rosato, A., Di Luzio, F., Ceschini, A., & Panella, M. (2022). A Fast Deep Learning Technique for Wi-Fi-Based Human Activity Recognition. Progress In Electromagnetics Research, 174, 127–141. https://doi.org/10.2528/PIER22042605

Suleman, M. A. R., & Shridevi, S. (2022). Short-Term Weather Forecasting Using Spatial Feature Attention Based LSTM Model. IEEE Access, 10, 82456–82468. https://doi.org/10.1109/ACCESS.2022.3196381

Tang, L., & Mahmoud, Q. H. (2022). A Deep Learning-Based Framework for Phishing Website Detection. IEEE Access, 10, 1509–1521. https://doi.org/10.1109/ACCESS.2021.3137636

Wang, G., Cao, L., Zhao, H., Liu, Q., & Chen, E. (2021). Coupling Macro-Sector-Micro Financial Indicators for Learning Stock Representations with Less Uncertainty. Proceedings of the AAAI Conference on Artificial Intelligence, 35(5), 4418–4426. https://doi.org/10.1609/aaai.v35i5.16568

Williams, R. I., Smith, A., Aaron, J. R., Manley, S. C., & McDowell, W. C. (2020). Small business strategic management practices and performance: A configurational approach. Economic Research-Ekonomska Istraživanja, 33(1), 2378–2396. https://doi.org/10.1080/1331677X.2019.1677488

Zhang, J., Olatosi, B., Yang, X., Weissman, S., Li, Z., Hu, J., & Li, X. (2022). Studying patterns and predictors of HIV viral suppression using A Big Data approach: a research protocol. BMC Infectious Diseases, 22(1), 122. https://doi.org/10.1186/s12879-022-07047-5

Downloads

Published

2024-01-25

How to Cite

Diqi, M., & Hamzah, H. (2024). Improving Stock Price Prediction Accuracy with StacBi LSTM. JISKA (Jurnal Informatika Sunan Kalijaga), 9(1), 10–26. https://doi.org/10.14421/jiska.2024.9.1.10-26