Deep Learning dalam Prediksi Kebiasaan Merokok di Inggris Guna Mendukung Kebijakan Kesehatan Masyarakat yang Lebih Efektif

Authors

  • Muhammad Arden Prabaswara Universitas Sebelas Maret
  • Kalistus Haris Pratama Universitas Sebelas Maret
  • Desva Fitranda Majid Universitas Sebelas Maret
  • Febri Liantoni Universitas Sebelas Maret

DOI:

https://doi.org/10.14421/jiska.2024.9.2.105-111

Keywords:

Smoke, Predictions, Deep Learning, Tobacco, Addictive

Abstract

Smoking is a common practice throughout the world, where a person smokes and inhales the smoke produced from burning tobacco or other tobacco products. This action has become a significant global health issue because of the various health risks. This activity is often considered an addictive habit because nicotine, the psychoactive compound in tobacco, can cause physical and psychological dependence. This research applies Deep Learning methods to predict data on smoking habits in the UK. The dataset used in this research includes information about gender, age, marital status, highest level of education, nationality, ethnicity, income, and region. Through this research using Deep Learning methods, we can examine a complex data set that describes Smoking Habits in the UK. Based on trials with a dataset of 1,691 items, an accuracy of 78% was obtained. This research can provide important insights into the effectiveness of anti-smoking policies that have been implemented and help plan further actions to reduce the prevalence of smoking and its negative impact on society.

References

Akinosho, T. D., Oyedele, L. O., Bilal, M., Ajayi, A. O., Delgado, M. D., Akinade, O. O., & Ahmed, A. A. (2020). Deep learning in the construction industry: A review of present status and future innovations. Journal of Building Engineering, 32, 101827. https://doi.org/10.1016/j.jobe.2020.101827

Allender, S., Balakrishnan, R., Scarborough, P., Webster, P., & Rayner, M. (2009). The burden of smoking-related ill health in the UK. Tobacco Control, 18(4), 262–267. https://doi.org/10.1136/tc.2008.026294

Čižiks, J., & Grabusts, P. (2019). Data Processing Using The Ibm Spss Modeler Tool. HUMAN. ENVIRONMENT. TECHNOLOGIES. Proceedings of the Students International Scientific and Practical Conference, 23, 16. https://doi.org/10.17770/het2019.23.4388

Jones, A. M., Laporte, A., Rice, N., & Zucchelli, E. (2015). Do Public Smoking Bans have an Impact on Active Smoking? Evidence from the UK. Health Economics, 24(2), 175–192. https://doi.org/10.1002/hec.3009

Karlsson, A., Ellonen, A., Irjala, H., Väliaho, V., Mattila, K., Nissi, L., Kytö, E., Kurki, S., Ristamäki, R., Vihinen, P., Laitinen, T., Ålgars, A., Jyrkkiö, S., Minn, H., & Heervä, E. (2021). Impact of deep learning-determined smoking status on mortality of cancer patients: never too late to quit. ESMO Open, 6(3), 100175. https://doi.org/10.1016/j.esmoop.2021.100175

Kitcharoen, N., Kamolsantisuk, S., Angsomboon, R., & Achalakul, T. (2013). RapidMiner framework for manufacturing data analysis on the cloud. The 2013 10th International Joint Conference on Computer Science and Software Engineering (JCSSE), 149–154. https://doi.org/10.1109/JCSSE.2013.6567336

Kotu, V., & Deshpande, B. (2019). Getting Started with RapidMiner. In Data Science (pp. 491–521). Elsevier. https://doi.org/10.1016/B978-0-12-814761-0.00015-0

LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436–444. https://doi.org/10.1038/nature14539

Mccaig, C. D. (1990). Electric Fields in Vertebrate Repair. Experimental Physiology, 75(2), 280–281. https://doi.org/10.1113/expphysiol.1998.sp004170

Najafabadi, M. M., Villanustre, F., Khoshgoftaar, T. M., Seliya, N., Wald, R., & Muharemagic, E. (2015). Deep learning applications and challenges in big data analytics. Journal of Big Data, 2(1), 1–21. https://doi.org/10.1186/S40537-014-0007-7/METRICS

Rickert, W. S., Wright, W. G., Trivedi, A. H., Momin, R. A., & Lauterbach, J. H. (2007). A comparative study of the mutagenicity of various types of tobacco products. Regulatory Toxicology and Pharmacology, 48(3), 320–330. https://doi.org/10.1016/j.yrtph.2007.05.003

Ristoski, P., Bizer, C., & Paulheim, H. (2015). Mining the Web of Linked Data with RapidMiner. Journal of Web Semantics, 35, 142–151. https://doi.org/10.1016/j.websem.2015.06.004

Sathishkumar, V. E., Cho, J., Subramanian, M., & Naren, O. S. (2023). Forest fire and smoke detection using deep learning-based learning without forgetting. Fire Ecology, 19(1), 1–17. https://doi.org/10.1186/S42408-022-00165-0/FIGURES/5

Tweed, J. O., Hsia, S. H., Lutfy, K., & Friedman, T. C. (2012). The endocrine effects of nicotine and cigarette smoke. Trends in Endocrinology & Metabolism, 23(7), 334–342. https://doi.org/10.1016/j.tem.2012.03.006

Zardo, P., & Collie, A. (2014). Predicting research use in a public health policy environment: results of a logistic regression analysis. Implementation Science : IS, 9(1), 142. https://doi.org/10.1186/S13012-014-0142-8/TABLES/2

Downloads

Published

2024-05-25

How to Cite

Prabaswara, M. A., Pratama, K. H., Majid, D. F., & Liantoni, F. (2024). Deep Learning dalam Prediksi Kebiasaan Merokok di Inggris Guna Mendukung Kebijakan Kesehatan Masyarakat yang Lebih Efektif. JISKA (Jurnal Informatika Sunan Kalijaga), 9(2), 105–111. https://doi.org/10.14421/jiska.2024.9.2.105-111

Issue

Section

Articles