The Mapping of Access Point Workloads at UIN Sunan Kalijaga Based on Log Analysis using K-Means Algorithm
PDF

Keywords

Access loads
Cluster
K-means
Log
Number of users

How to Cite

Kharisma, R. B., & Yazid, A. S. (2018). The Mapping of Access Point Workloads at UIN Sunan Kalijaga Based on Log Analysis using K-Means Algorithm. IJID (International Journal on Informatics for Development), 6(1), 17–20. https://doi.org/10.14421/ijid.2017.06105

Abstract

This study aims to map the use of access points based on the log of usage in several locations in the UIN Sunan Kalijaga. The analyzed data are access point records taken three times a day for one week working hours. The data obtained was processed and clustered using the K-Means algorithm. There are five clusters obtained from the processed data, each of which divides the number of access loads from an access point. The results of clustering provide a recommendation on which locations need to be added to access points that it can improve institutional user
services.

https://doi.org/10.14421/ijid.2017.06105
PDF

References

Arsih, Kansul. (2012). Perancangan dan Implementasi Aplikasi Analisis Log Menggunakan Metode JST Adaptive Resonance Theory 2 dalam Memprediksi Tingkah Laku Pengguna Internet. Bandung : Universitas Telkom

Witten, et al. (2012). Data Mining Practical Machine Learning Tools and Technique, 2nd Edition. San Fransisco : Morgan Kaufmann

Micro, Andi. (2012). Dasar-dasar Jaringan Komputer. clearOS Indonesia

Aini, Fithratul. (2011). Web Usage Mining Menggunakan Algoritma Adaptive Web Access Pattern Tree (AWAPT). Bandung: Universitas Telkom

Han, Jiawei. et al. (2011). Data Mining: Concepts and Tecniques, 3rd ed. San Francisco: Morgan Kauffman

Prasetyo, Eko. (2012). Data Mining : Konsep dan Aplikasi Menggunakan MATLAB. Yogyakarta : Andi

Creative Commons License
IJID (International Journal on Informatics for Development) is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License