Abstract
Apparently Social media sites are becoming increasingly popular, it creates platforms through which organizations, communities, and individuals share and discuss various topics. The reviews and data obtained from these sites are essential for further analysis. In this paper we studied the sentiment classification of 2019 Kenyan 1000 banknote demonetization using Twitter as our source dataset. We perform Multi nominal naïve Bayes classifier algorithm to classify tweets documents. We split our dataset using k-folder validation since we had limited amounts of data, so to achieve unbiased prediction of the model. . We obtained in test data an accuracy of 70.8% when we used unigram model and 64.1% when we applied bigram model. Results show that the model reached to an acceptable accuracy of (71%) on average using unigram model.
References
B. Liu, “Sentiment Analysis and Opinion Mining,” Morgan & Claypool Publishers, 2012.
“Demonetisation Decoded: A Critique of India’s Currency Experiment - Jayati Ghosh, C. P. Chandrasekhar, Prabhat Patnaik - Google Books.” https://books.google.co.id/books/about/Demonetisation_Decoded.html?id=FkYlDwAAQBAJ&redir_esc=y (accessed Sep. 03, 2020).
“Twitter - Company.” https://about.twitter.com/en_us/company.html (accessed Sep. 03, 2020).
A. Agarwal, B. Xie, I. Vovsha, O. Rambow, and R. Passonneau, “Sentiment Analysis of Twitter Data,” Association for Computational Linguistics, 2011. Accessed: Sep. 03, 2020. [Online]. Available: http://www.webconfs.com/stop-words.php.
B. O’connor, R. Balasubramanyan, B. R. Routledge, and N. A. Smith, “From Tweets to Polls: Linking Text Sentiment to Public Opinion Time Series.” Accessed: Sep. 03, 2020. [Online]. Available: http://www.sca.isr.umich.
A. Hernandez-Suarez, G. Sanchez-Perez, K. Toscano-Medina, V. Martinez-Hernandez, V. Sanchez, and H. Perez-Meana, “A Web Scraping Methodology for Bypassing Twitter API Restrictions | Request PDF.” https://www.researchgate.net/publication/324055334_A_Web_Scraping_Methodology_for_Bypassing_Twitter_API_Restrictions (accessed Sep. 03, 2020).
N. Godbole, M. Srinivasaiah, and S. Skiena, “Large-Scale Sentiment Analysis for News and Blogs.” Accessed: Sep. 03, 2020. [Online]. Available: http://www.textmap.com/sentiment.
M. Korayem, D. Crandall, and M. Abdul-Mageed, “Subjectivity and Sentiment Analysis of Arabic: A Survey,” in Communications in Computer and Information Science, 2012, vol. 322, pp. 128–139, doi: 10.1007/978-3-642-35326-0_14.
R. Mcdonald, K. Hannan, T. Neylon, M. Wells, and J. Reynar, “Structured Models for Fine-to-Coarse Sentiment Analysis.”
J. Benhardus, “Streaming Trend Detection in Twitter,” 2010. Accessed: Sep. 03, 2020. [Online]. Available: http://twitter.com.
C. Strapparava and R. Mihalcea, “SemEval-2007 Task 14: Affective Text,” 2007. Accessed: Sep. 03, 2020. [Online]. Available: https://www.aclweb.org/anthology/S07-1013.
B. Das Sarit Chakraborty Student Member and I. Member, “An Improved Text Sentiment Classification Model Using TF-IDF and Next Word Negation.”
E. Demirtas and M. Pechenizkiy, Cross-lingual Polarity Detection with Machine Translation. 2013.
E. Frank and R. R. Bouckaert, “Naive Bayes for Text Classification with Unbalanced Classes.”
A. Mccallum and K. Nigam, “A Comparison of Event Models for Naive Bayes Text Classification.”
M. Abbas, K. Ali, S. Memon, A. Jamali, S. Memon, and A. Ahmed, “Multinomial Naive Bayes Classification Model for Sentiment Analysis,” IJCSNS Int. J. Comput. Sci. Netw. Secur., vol. 19, no. 3, pp. 62–67, 2019, Accessed: Sep. 03, 2020. [Online]. Available: https://www.researchgate.net/publication/334451164_Multinomial_Naive_Bayes_Classification_Model_for_Sentiment_Analysis.
A. R. Susanti, T. Djatna, and W. A. Kusuma, “Twitter’s sentiment analysis on GSM services using Multinomial Naïve Bayes,” Telkomnika (Telecommunication Comput. Electron. Control., vol. 15, no. 3, pp. 1354–1361, 2017, doi: 10.12928/TELKOMNIKA.v15i3.4284.
A. M. Kibriya, E. Frank, B. Pfahringer, and G. Holmes, “Multinomial naive bayes for text categorization revisited,” in Lecture Notes in Artificial Intelligence (Subseries of Lecture Notes in Computer Science), 2004, vol. 3339, pp. 488–499, doi: 10.1007/978-3-540-30549-1_43.
P. Chaovalit and L. Thou, “Movie review mining: A comparison between supervised and unsupervised classification approaches,” in Proceedings of the Annual Hawaii International Conference on System Sciences, 2005, p. 112, doi: 10.1109/hicss.2005.445.
P. K. Srijith, S. Shevade, and S. Sundararajan, “Semi-supervised Gaussian Process Ordinal Regression.”
G. I. Webb, M. J. Pazzani, and D. Billsus, “Machine Learning for User Modeling.”
A. Go, R. Bhayani, and L. Huang, “Twitter Sentiment Classification using Distant Supervision.” Accessed: Sep. 03, 2020. [Online]. Available: http://tinyurl.com/cvvg9a.
Y. HaCohen-Kerner and H. Badash, “Positive and Negative Sentiment Words in a Blog Corpus Written in Hebrew,” in Procedia Computer Science, Jan. 2016, vol. 96, pp. 733–743, doi: 10.1016/j.procs.2016.08.257.
A. C. E. S. Lima, L. N. De Castro, and J. M. Corchado, “A polarity analysis framework for Twitter messages,” Appl. Math. Comput., vol. 270, pp. 756–767, Nov. 2015, doi: 10.1016/j.amc.2015.08.059.
B. Hegde, N. H. S, and M. Prakash, “Sentiment analysis of Twitter data: A machine learning approach to analyse demonetization tweets,” Int. Res. J. Eng. Technol., 2018, Accessed: Sep. 03, 2020. [Online]. Available: www.irjet.net.
I. M. Noor, “Sentiment Analysis on New Currency in Kenya Using Twitter Dataset,” in Proceeding International Conference on Science and Engineering, 2020, pp. 237–240, Accessed: Sep. 04, 2020. [Online]. Available: http://sunankalijaga.org/prosiding/index.php/icse/article/view/503/478.
IJID (International Journal on Informatics for Development) is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License