Song Recommendation Application Using Speech Emotion Recognition
PDF

Keywords

k-nearest neighbor
request
song
Radio Broadcasters
Radio Listeners

How to Cite

Setiawan, E. B., & Iqbal Dzulfiqar, A. G. (2021). Song Recommendation Application Using Speech Emotion Recognition. IJID (International Journal on Informatics for Development), 10(1), 15–22. https://doi.org/10.14421/ijid.2021.2354

Abstract

This research was conducted to facilitate the interaction between radio broadcasters and radio listeners during the song request process.  This research was triggered by the difficulty of the broadcasters in monitoring song requests from listeners. The system is made to accommodate all song requests by listeners. The application produced in this study uses speech emotion recognition technology based on a person's mood obtained from the spoken words.  This technology can change the voice into one of the mood categories: neutral, angry, sad, and afraid.  The k-Nearest Neighbor method is used to get recommendations for recommended song titles by looking for the closeness of the value between the listener's mood and the availability of song playlists. kNN is used because this method is suitable for user-based collaborative problems. kNN will recommend three songs which then be offered to listeners by broadcasters. Based on tests conducted to the broadcasters and radio listeners, this study has produced a song request application by recommending song titles according to the listener's mood,  the text message, the searching songs, and the song requests and the song details that have been requested. Functional test that has been carried out has received 100 because all test components have succeeded as expected.

https://doi.org/10.14421/ijid.2021.2354
PDF

References

A. Murtadha, “PERAN LEMBAGA PENYIARAN RADIO REPUBLIK INDONESIA SEBAGAI SABUK PENGAMANAN INFORMASI DI WILAYAH PERBATASAN KABUPATEN NATUNA PROVINSI KEPULAUAN RIAU,” J. Penelit. Komun. dan Pembang., vol. 15, no. 2, 2018.

A. S. B. Nugroho, I. Wardiah, and M. K. Ilmi, “Aplikasi Radio Daring Pemerintah Kabupaten Hulu Sungai Tengah Berbasis Web,” Poros Tek., vol. 10, no. 1, 2018.

M. Exsan and U. Fadlilah, “Pembangunan Infrastruktur Voice Over Internet Protocol di Organisasi Perangkat Daerah Boyolali menggunakan Server Elastix,” Emit. J. Tek. Elektro, vol. 17, no. 2, 2017.

N. C. R., R. R. R., and V. K. R. K., “Voice over IP Via IEEE 802.11 Wireless LAN,” N., Ananthi, vol. 2, no. 2, pp. 218–222, 2016.

S. B. Aziz, T. A. Riza, and R. Tulloh, “PERANCANGAN DAN IMPLEMENTASI APLIKASI SISTEM ANTRIAN UNTUK PASIEN PADA DOKTER UMUM BERBASIS ANDROID DAN SMS GATEWAY,” J. Elektro dan Telekomun. Terap., vol. 2, no. 1, 2016.

J. M. Garcia-Garcia, V. M. R. Penichet, and M. D. Lozano, “Emotion detection: A technology review,” in ACM International Conference Proceeding Series, 2017, vol. Part F131194.

M. Magdin, T. Sulka, J. Tomanová, and M. Vozár, “Voice Analysis Using PRAAT Software and Classification of User Emotional State,” Int. J. Interact. Multimed. Artif. Intell., vol. 5, no. 6, 2019.

G. Li and J. Zhang, “Music personalized recommendation system based on improved KNN algorithm,” in Proceedings of 2018 IEEE 3rd Advanced Information Technology, Electronic and Automation Control Conference, IAEAC 2018, 2018.

J. Sarah, “Pemanfaatan Api Spotify Dan Twitter Dalam Merekomendasikan Lagu Berdasarkan Mood Pada Tweet Dan Aktivitas Pengguna Melalui Sensor Accelerometer Berbasis Android,” Universitas Komputer Indonesia, 2018.

M. Rahardian, “PERANCANGAN APLIKASI REKOMENDASI PILIHAN LAGU BERDASARKAN MOOD,” Simki-Techsain, 2015.

N. L. G. P. Suwirmayanti, “Penerapan Metode K-Nearest Neighbor Untuk Sistem Rekomendasi Pemilihan Mobil,” Techno.Com, vol. 16, no. 2, 2017.

N. Büdenbender and G. Kreutz, “Familiarity of Western melodies: An exploratory approach to influences of national culture, genre and musical expertise,” Music. Sci., vol. 20, no. 2, 2016.

I. G. Harsemadi, M. Sudarma, and N. Pramaita, “Implementasi Algoritma K-Nearest Neighbor pada Perangkat Lunak Pengelompokan Musik untuk Menentukan Suasana Hati,” Teknol. Elektro, vol. 16, no. 1, pp. 14–20, 2017.

R. Sutiama and P. Yandri, “Suasana toko, suasana hati, kualitas pelayanan, dan keputusan pembelian antara konsumen restoran modern dan restoran tradisional,” Indones. J. Econ. Appl., vol. 1, no. 2, 2019.

S. Mao, D. Tao, G. Zhang, P. C. Ching, and T. Lee, “Revisiting Hidden Markov Models for Speech Emotion Recognition,” in ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings, 2019, vol. 2019-May.

T. Yoshioka, H. Erdogan, Z. Chen, and F. Alleva, “Multi-Microphone Neural Speech Separation for Far-Field Multi-Talker Speech Recognition,” in ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings, 2018, vol. 2018-April.

B. Cooksey, “An Introduction to APIs,” An Introd. to EDCI 554, 2015.

C. LYTRIDIS, E. VROCHIDOU, and V. KABURLASOS, “Emotional Speech Recognition toward Modulating the Behavior of a Social Robot,” Proc. JSME Annu. Conf. Robot. Mechatronics, vol. 2018, no. 0, pp. 1A1-B14, 2018.

D. Sánchez-Moreno, A. B. Gil González, M. D. Muñoz Vicente, V. F. López Batista, and M. N. Moreno García, “A collaborative filtering method for music recommendation using playing coefficients for artists and users,” Expert Syst. Appl., vol. 66, 2016.

M. A. Budiman and G. A. V. Mastrika Giri, “Song Recommendations Based on Artists with Cosine Similarity Algorithms and K-Nearest Neighbor,” JELIKU (Jurnal Elektron. Ilmu Komput. Udayana), vol. 8, no. 4, 2020.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Copyright (c) 2021 IJID (International Journal on Informatics for Development)