Abstract
The Fourier series is a trigonometric polynomial that has flexibility, so it adapts effectively to the local nature of the data. This Fourier series estimator is generally used when the data used is investigated for unknown patterns and there is a tendency for seasonal patterns. This study aims to determine the results of the best Fourier series nonparametric regression model and the level of accuracy of the Fourier series nonparametric regression model on rainfall data by month in West Java Province in 2015-2019. This research is about a nonparametric regression model of Fourier series which is estimated using Ordinary Least Square method. Nonparametric regression using the Fourier series approach was applied to Rainfall data in West Java Province in 2015-2019. The independent variables used were the average air humidity, air pressure, wind speed, and air temperature. The model used to model the amount of rainfall in West Java Province is a nonparametric Fourier series. The nonparametric regression model is the best Fourier series with K =13 values obtained Generalized Cross Validation, Mean Square Error, and R2 respectively at 549.92; 462.09; and 97.30%. The results showed that the variables of air humidity and air pressure had a significant effect on rainfall.
References
S. Suparti, R. Santoso, A. Prahutama, and ..., “Analisis Data Inflasi Indonesia Menggunakan Metode Fourier dan Wavelet Multiscale Autoregresive,” … (Venue Artik. …, 2018.
A. Prahutama, “PROSIDING SEMINAR NASIONAL STATISTIKA MODEL REGRESI NONPARAMETRIK DENGAN PENDEKATAN DERET FOURIER PADA KASUS TINGKAT PENGANGGURAN TERBUKA DI JAWA TIMUR,” Pros. Semin. Nas. Stat. UNDIP, 2013.
N. P. A. M. Mariati, I. N. Budiantara, and V. Ratnasari, “Combination Estimation of Smoothing Spline and Fourier Series in Nonparametric Regression,” J. Math., vol. 2020, 2020, doi: 10.1155/2020/4712531.
F. Nurjanah, T. W. Utami, and I. M. Nur, “MODEL REGRESI NONPARAMETRIK DENGAN PENDEKATAN DERET FOURIER PADA POLA DATA CURAH HUJAN DI KOTA SEMARANG,” J. Stat. Univ. Muhammadiyah Semarang, vol. 3, no. 2, 2015.
I. R. Nur Wisisono, A. I. Nurwahidah, and Y. Andriyana, “Regresi Nonparametrik dengan Pendekatan Deret Fourier pada Data Debit Air Sungai Citarum,” J. Mat. “MANTIK,” vol. 4, no. 2, 2018, doi: 10.15642/mantik.2018.4.2.75-82.
W. Agustin, “Pola Distribusi Hujan Jam-jaman di Sub DAS Keduang,” Universitas Sebelas Maret, Surakarta, 2010.
E. Aldrian and R. Dwi Susanto, “Identification of three dominant rainfall regions within Indonesia and their relationship to sea surface temperature,” Int. J. Climatol., vol. 23, no. 12, 2003, doi: 10.1002/joc.950.
A. Damanik, Fungsi-fungsi Khusus dilengkapi dengan Deret Fourier & Transformasi Integral. Yogyakarta: Graha Ilmu, 2010.
M. Ayu, D. Octavanny, N. Budiantara, H. Kuswanto, and D. P. Rahmawati, “A New Mixed Estimator in Nonparametric Regression for Longitudinal Data,” 2021, doi: 10.1155/2021/3909401.
N. Chamidah, Buku Ajar Analisis Regresi Nonparametrik Menggunakan Program R. Surabaya: Airlangga University, 2020.
Ridwansyah, “Deret & Transformasi Fourier Dalam Penentuan Domain Frekuensi Sinyal Gelombang Radio Melalui Program Matlab,” Makassar, 2016.
R. L. Eubank, Nonparametric Regression and Spline Smoothing, 2nd ed. CRC, 1999.
A. Munawwir, “Estimasi Parameter Model Regresi Menggunakan Metode Weighted Least Square (WLS) dengan Fungsi Pembobot Huber,” UIN Maulana Malik, Malang, 2014.
Suparti, R. Santoto, A. Prahutama, and A. R. Devi, Regresi Nonparametrik. Wade Group National Publishing, 2018.
M. F. Qudratullah, Analisis Regresi Terapan: Teori, Contoh Kasus, dan Aplikasi dengan SPSS. Yogyakarta: Andi, 2013.
R. A. Malau, Metode Statistika Nonparametrik, First. Jakarta: Universitas Terbuka, 2007.

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.