Forecasting: Analyze Online and Offline Learning Mode with Machine Learning Algorithms
PDF

Keywords

educational evolution
online learning mode
decision tree
Naive Bayes classifier
RapidMiner

How to Cite

Ardiani, F., Rodhiyah Mardhiyyah, Syahalam, I. A., & Nasmah Nur Amiroh. (2023). Forecasting: Analyze Online and Offline Learning Mode with Machine Learning Algorithms. IJID (International Journal on Informatics for Development), 11(2), 252–261. https://doi.org/10.14421/ijid.2022.3733

Abstract

Since the pandemic occurred, in March 2020, learning activities have changed from an offline to an online learning mode. This is the first time, such a huge change has occurred, simultaneously in the entire hemisphere. This learning mode opens a new discourse regarding the impact on the learning mode and educational evaluation results. The author aims to compare the results of the educational evaluation of the online learning mode during the pandemic with offline learning mode, so that differences will be known, as well as can be used to predict student learning outcomes, in order to obtain an overview of the effectiveness and efficiency of a learning mode. Data collection is carried out as an initial step in data processing, based on the final results of student learning, in certain courses taken every semester starting in 2017-2022. The data consists of 6 indicators, namely CI1-CI4, grades, and letter grades. The result of this study is the prediction of a more effective learning mode used, as decision support carried out by the forecasting method, comparing the Naïve Bayes and Decision Tree algorithm in getting the best accuracy value, by analyzing the learning mode offline to online.

https://doi.org/10.14421/ijid.2022.3733
PDF

References

A. F. Himmah, ‘Implementasi Strategi Metode Ceramah Dalam Pembelajaran Daring Dan Luring Pada Siswa Kelas II Mi Nurul Islam 02 Balung Kulon Di Masa Pandemi’, PESAT: Jurnal Pendidikan, Sosial, dan Agama, vol. 6, no. 6, pp. 124–133, 2021.

T. A. Nengrum, N. Pettasolong, and M. Nuriman, ‘Kelebihan dan Kekurangan Pembelajaran Luring dan Daring dalam Pencapaian Kompetensi Dasar Kurikulum Bahasa Arab di Madrasah Ibtidaiyah 2 Kabupaten Gorontalo’, Jurnal Pendidikan, vol. 30, no. 1, p. 1, 2021, doi: 10.32585/jp.v30i1.1190.

I. R. Badriyah, A. Akhwani, N. Nafiah, and M. S. Djazilan, ‘Analisis Model Pembelajaran Daring dan Luring pada Masa Pandemi Covid-19 di Sekolah Dasar’, Jurnal Basicedu, vol. 5, no. 5, pp. 3651–3659, 2021, doi: https://doi.org/10.31004/basicedu.v5i5.1373 ISSN.

A. Desiani, S. Yahdin, and D. Rodiah, ‘Prediksi Tingkat Indeks Prestasi Kumulatif Akademik Mahasiswa dengan Menggunakan Teknik Data Mining’, Jurnal Teknologi Informasi dan Ilmu Komputer, vol. 7, no. 6, p. 1237, 2020, doi: 10.25126/jtiik.2020722493.

R.- Annisa and A.- Sasongko, ‘Prediksi Nilai Akademik Mahasiswa Menggunakan Algoritma Naïve Bayes’, JST (Jurnal Sains dan Teknologi), vol. 9, no. 1, pp. 1–10, 2020, doi: 10.23887/jstundiksha.v9i1.19488.

A. Qoiriah and Y. Yamasari, ‘Prediksi Nilai Akhir Mahasiswa Dengan Metode Regresi (Studi Kasus Mata Kuliah Pemrograman Dasar)’, Journal of Information Engineering and Educational Technology, vol. 5, no. 1, pp. 40–43, 2021, doi: 10.26740/jieet.v5n1.p40-43.

H. K. Baihaqi, J. Jumadi, A. and Mardiani, and R. Religia, ‘Analyzing Student Inquiry In Online And Offline Classes During The Covid-19 Pandemic Through Momentum And Impulse Worksheets’, Momentum: Physics Education Journal, vol. 5(2), pp. 161–174, 2021.

H. S. Park and S. J. Yoo, ‘Early Dropout Prediction In Online Learning Of University Using Machine Learning’, International Journal on Informatics Visualization, vol. 5(4), pp. 347–353, 2021.

F. L. Damayanti and N. Rachmah, ‘Effectiveness Of Online Vs Offline Classes For EFL Classroom: A Study Case In A Higher Education, Journal of English Teaching’, Applied Linguistics and Literatures (JETALL), vol. 3(1), p. 19, 2020.

R. J. Hyndman and G. Athanasopoulos, Forecasting : Principles and Practice, Second. Texts, 2018.

M. Hofmann and R. Klinkenberg, Rapid Miner Data Mining Use Cases and Business Analytics Applications. 2014.

H. Hapsari, M. D. Fauzi, and S. ’Uyun, ‘An Application of Mamdani in Selecting Majors in Higher Education’, IJID, vol. 2, no. 1, 2013.

E. Manurung and P. S. Hasugian, ‘Data Mining Tingkat Pesanan Inventaris Kantor Menggunakan Algoritma Apriori pada Kepolisian Daerah Sumatera Utara’, Journal Of Informatic Pelita Nusantara, vol. 4, no. 2, pp. 8–13, 2019, [Online]. Available: https://e-jurnal.pelitanusantara.ac.id/index.php/JIPN/article/view/608/0

Z.-H. Zhou, Machine Learning. Tsinghua University Press, 2021.

G. Chassagnon, M. Vakalopolou, N. Paragios, and M. P. Revel, ‘Deep learning: definition and perspectives for thoracic imaging’, Eur Radiol, vol. 30, no. 4, pp. 2021–2030, 2020, doi: 10.1007/s00330-019-06564-3.

R. Chauhan and H. Kaur, Predictive Analytics and Data Mining. 2015. doi: 10.4018/978-1-4666-9562-7.ch019.

Suyatno, Machine Learning Tingkat Dasar dan Lanjutan, First Edit. Pasar Buku Planasari No.82, Bandung, 40264: Informatika Bandung, 2018.

E. Pekel, ‘Estimation of soil moisture using decision tree regression’, Theor Appl Climatol, vol. 139, no. 3–4, pp. 1111–1119, 2020, doi: 10.1007/s00704-019-03048-8.

H. F. Zhou, J. W. Zhang, Y. Q. Zhou, X. J. Guo, and Y. M. Ma, ‘A feature selection algorithm of decision tree based on feature weight’, Expert Syst Appl, vol. 164, no. September 2020, p. 113842, 2021, doi: 10.1016/j.eswa.2020.113842.

M. Bansal, A. Goyal, and A. Choudhary, ‘A comparative analysis of K-Nearest Neighbor, Genetic, Support Vector Machine, Decision Tree, and Long Short Term Memory algorithms in machine learning’, Decision Analytics Journal, vol. 3, no. May, p. 100071, 2022, doi: 10.1016/j.dajour.2022.100071.

D. Ramos, P. Faria, L. Gomes, and Z. Vale, ‘A Contextual Reinforcement Learning Approach for Electricity Consumption Forecasting in Buildings’, IEEE Access, vol. 10, pp. 61366–61374, 2022, doi: 10.1109/ACCESS.2022.3180754.

D. A. Putri, D. A. Kristiyanti, E. Indrayuni, A. Nurhadi, and D. R. Hadinata, ‘Comparison of Naive Bayes Algorithm and Support Vector Machine using PSO Feature Selection for Sentiment Analysis on E-Wallet Review’, J Phys Conf Ser, vol. 1641, no. 1, 2020, doi: 10.1088/1742-6596/1641/1/012085.

I. Romli, T. Pardamean, S. Butsianto, T. N. Wiyatno, and E. bin Mohamad, ‘Naive Bayes Algorithm Implementation Based on Particle Swarm Optimization in Analyzing the Defect Product’, J Phys Conf Ser, vol. 1845, no. 1, pp. 0–6, 2021, doi: 10.1088/1742-6596/1845/1/012020.

M. R. Romadhon and F. Kurniawan, ‘A Comparison of Naive Bayes Methods, Logistic Regression and KNN for Predicting Healing of Covid-19 Patients in Indonesia’, 3rd 2021 East Indonesia Conference on Computer and Information Technology, EIConCIT 2021, pp. 41–44, 2021, doi: 10.1109/EIConCIT50028.2021.9431845.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.