Abstract
High accuracy and speed in data search, which are aims at finding the best solution to a problem, are essential. This study examines the brute force method, genetic algorithm, and two proposed algorithms which are the development of the brute force algorithm and genetic algorithm, namely Multiple Crossover Genetic, and Genetics with increments values. Brute force is a method with a direct approach to solving a problem based on the formulation of the problem and the definition of the concepts involved. A genetic algorithm is a search algorithm that uses genetic evolution that occurs in living things as its basis. This research selected the case of determining the pin series by looking for a match between the target and the search result. To test the suitability of the method, 100-time tests were conducted for each algorithm. The results of this study indicated that brute force has the highest average generation rate of 737146.3469 and an average time of 1960.4296, and the latter algorithm gets the best score with an average generation rate of 36.78 and an average time of 0.0642.
References
Beki Subaeki and Asep Muhammad Indra Purnama, “Optimalisasi Perbandingan Algoritma Brute Force dan Knuth-Morris-Pratt untuk Meningkatkan Kecepatan Pencarian Data pada Aplikasi Mobile Tentang Hewan Vertebrata,” Techno Socio Ekonomika, vol. 10, pp. 224–333, 2017.
V. Handrianus Pranatawijaya and P. Bagus Adidyana Anugrah Putra, “Implementasi Algoritma Genetika Pada Penjadwalan Program Profesional Jurusan Teknik Informatika Universitas Palangka Raya,” vol. 5, pp. 90–98, 2019, doi: 10.22216/jsi.v5i2.4659.
W. Supriana et al., “Implementasi Dua Model Crossover Pada Algoritma Genetika untuk Optimasi Penggunaan Ruang Perkuliahan,” 167 Jurnal Resistor, vol. 4, no. 2, pp. 167–177, 2021, [Online]. Available: http://jurnal.stiki-indonesia.ac.id/index.php/jurnalresistor
A. Mohammad, O. Saleh, and R. A. Abdeen, “Occurrences Algorithm for String Searching Based on Brute-force Algorithm,” Journal of Computer Science, vol. 2, no. 1, pp. 82–85, Jan. 2006, doi: 10.3844/jcssp.2006.82.85.
N. S. Sukmadinata, “Metode Penelitian Pendidikan,” Bandung, 2016.
M. Kumar, A. Professor, S. Kumar Singh, R. K. Dwivedi, and A. Professor, “A Comparative Study of Black Box Testing and White Box Testing Techniques,” International Journal of Advance Research in Computer Science and Management Studies, vol. 3, no. 10, 2015, [Online]. Available: www.ijarcsms.com
N. Golіan, V. Golіan, and I. Afanasieva, “Black and White-Box Unit Testing for Web Applications,” Bulletin of National Technical University “KhPI”. Series: System Analysis, Control and Information Technologies, no. 1 (7), pp. 79–83, Jul. 2022, doi: 10.20998/2079-0023.2022.01.13.
Nurul Fuadi, Muh. Arif, And Sri Zelviani, “Pengaruh Kebisingan Terhadap Frekuensi Denyut Nadi dan Kelelahan Kerja Menggunakan Uji Statistik Spss pada Uji Paired Sampel T-Test,” Jurnal Insitek, vol. 7, pp. 325–333, 2022.
R. Imanuel and N. #1, “Studi Komparatif Algoritma Fisher Yates dengan Brute Force pada Permainan Kartu 24,” 2020.
G. H. Fandi Nainggolan et al., “Pencarian Berita Pada Web Portal Menggunakan Algoritma Brute Force String Matching,” JIPI, vol. 6, pp. 1–10.
Bayu Widia Santoso, Firdiansyah Sundawa, and Muhammad Azhari, “Implementasi Algoritma Brute Force Sebagai Mesin Pencari (Search Engine) Berbasis Web Pada Database,” Sisfotek Global, vol. 6, pp. 1–8, 2016.
H. A. Taha, Operations Research: An Introduction, 4th ed., vol. 40. United State of America: Preason Education, 2007.
Z. Michalewicz., “Artificial Intelligence in Medicine Book reviews,” 1997.
Xin-She Yang, Nature-Inspired Optimization Algorithms. London: mara corner.
Try Feby Ramadonna, Ade Sivia, and Ciksadan, “Perbandingan Algoritma Genetika dan TSP Untuk Optimalisasi Jaringan Akses Fiber To The Home,” 2017.
L. P. S. Ardiyani, “Perbandingan Algoritma Genetika dengan Algoritma Steepest Ascent Hill Climbing untuk Optimasi Penjadwalan Kuliah,” Jurnal Nasional Pendidikan Teknik Informatika (JANAPATI), vol. 11, no. 1, p. 63, Apr. 2022, doi: 10.23887/janapati.v11i1.43172.
A. B. Hassanat, V. B. S. Prasath, M. A. Abbadi, S. A. Abu-Qdari, and H. Faris, “An improved Genetic Algorithm with a new initialization mechanism based on Regression techniques,” Information (Switzerland), vol. 9, no. 7, Jul. 2018, doi: 10.3390/info9070167.
P. Brusilovsky, “Hybrid Web Recommender Systems,” 2007. [Online]. Available: http://www.google.com
B. U. Tri Wahyo and A. Widya Anggriawan, “Sekolah Tinggi Manajemen Informatika dan Komputer ASIA Malang 6 Sistem Rekomendasi Paket Wisata Se-Malang Raya Menggunakan Metode Hybrid Content Based dan Collaborative,” 2015.

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.