Abstract
The digital era affects students' attitudes toward utilizing applications as learning media. This phenomenon can be used to boost student achievement, but it can also have negative consequences, such as chatting while studying or cheating on school exams. To support the positive and reduce the negative impact of smartphone use, it is necessary to supervise this activity. The supervision can be done by utilizing a camera to detect a smartphone. The YOLOv5 algorithm was used, which is known for its good speed and accuracy in object detection. This smartphone detection system can be controlled, so the application is adjustable to the needs of learning activities. Collecting a dataset, annotating, training objects, writing program code, and testing the system are all stages in the development of this system. The dataset used in this research consists of 1,038 smartphone images from the internet and camera-captured images. This detection system was built to assist teachers in monitoring the use of smartphones by students. The results of this model training are 77.7% mean average precision, 93.2% precision rate, and 71.7% recall rate under varying lighting conditions.
References
Y. Intaniasari and R. D. Utami, “Jurnal basicedu,” J. Basicedu, vol. 6, no. 3, pp. 4987–4998, 2022, [Online]. Available: https://jbasic.org/index.php/basicedu/article/view/2996/pdf.
I. W. Ningsih, A. Widodo, and Asrin, “Urgensi Kompetensi Literasi Digital dalam Pembelajaran pada Masa Pandemi Covid-19,” J. Inov. Teknol. Pendidik., vol. 8, no. 2, pp. 132–139, 2021, [Online]. Available: https://journal.uny.ac.id/index.php/jitp/article/view/35912/17365.
S. Fitri, F. D. Saputra, and M. Taufiq, “Pengaruh Penggunaan Smartphone Terhadap Minat Belajar Siswa SMK Negeri 1 Tasikmalaya,” JUPEIS J. Pendidik. dan Ilmu Sos., vol. 1, no. 3, 2022, [Online]. Available: http://jurnal.jomparnd.com/index.php/jp/article/view/65/174.
R. Deol and Meenakshi, “Impact of Mobile Phone Use on School Students’ Interpersonal Communication,” Turkish Online J. Qual. Inq., vol. 12, no. 6, pp. 565–574, 2021, [Online]. Available: https://www.tojqi.net/index.php/journal/article/view/1186/533.
M. Rizky and A. Subiyakto, “Pemanfaatan Artificial Intelligence dalam Menghadapi Pademi Covid-19 : Systematic Literatur Riview,” J. Sist. Cerdas, vol. 05, no. 01, pp. 46–52, 2022, [Online]. Available: https://apic.id/jurnal/index.php/jsc/article/view/184/99.
M. Siahaan, C. H. Jasa, K. Anderson, M. V. Rosiana, S. Lim, and W. Yudianto, “Penerapan Artificial Intelligence ( AI ) Terhadap Seorang Penyandang Disabilitas Tunanetra,” J. Inf. Syst. Technol., vol. 01, no. 02, pp. 186–193, 2020, [Online]. Available: https://journal.uib.ac.id/index.php/joint/article/download/4322/1122.
Y. Rana, “Python : Simple Though an Important Programming Language,” Int. Res. J. Eng. Technol., vol. 6, no. 2, pp. 1856–1858, 2019, [Online]. Available: https://www.irjet.net/archives/V6/i2/IRJET-V6I2367.pdf.
S. Raschka, J. Patterson, and C. Nolet, “Machine Learning in Python : Main Developments and Technology Trends in Data Science , Machine Learning , and Artificial Intelligence,” Information, vol. 11, no. 4, p. 193, 2020, doi: 10.3390/info11040193.
A. Aprilino, I. Husni, and A. Amin, “Implementasi Algoritma Yolo dan Tesseract OCR pada Sistem Deteksi Plat Nomor Otomatis,” J. TEKNOINFO, vol. 16, no. 1, pp. 54–59, 2022, [Online]. Available: https://ejurnal.teknokrat.ac.id/index.php/teknoinfo/article/view/1522.
A. A. Putra, I. W. Wahyuni, Alucyana, and Ajriya, “Pengaruh Penggunaan Handphone Pada Siswa Sekolah Dasar,” Al-Hikmah J. Agama dan Ilmu Pengetah., vol. 18, no. 1, pp. 79–89, 2021, doi: 10.25299/al-hikmah:jaip.2021.vol18(1).6531.
L. M. Ramjan et al., “The negative impact of smartphone usage on nursing students: An integrative literature review,” Nurse Educ. Today, vol. 102, no. April, p. 104909, 2021, doi: 10.1016/j.nedt.2021.104909.
S. Han, “Impact of Smartphones on Students: How Age at First Use and Duration of Usage Affect Learning and Academic Progress,” Technol. Soc., vol. 70, p. 102002, 2022, doi: https://doi.org/10.1016/j.techsoc.2022.102002.
J. S. Murthy, G. M. Siddesh, W. C. Lai, B. D. Parameshachari, S. N. Patil, and K. L. Hemalatha, “Object Detect: A Real-Time Object Detection Framework for Advanced Driver Assistant Systems using YOLOv5,” Wirel. Commun. Mob. Comput., vol. 2022, 2022, doi: 10.1155/2022/9444360.
T. Abuzairi, Nurdina Widanti, Arie Kusumaningrum, and Yeni Rustina, “Implementasi Convolutional Neural Network Untuk Deteksi Nyeri Bayi Melalui Citra Wajah Dengan YOLO,” J. RESTI (Rekayasa Sist. dan Teknol. Informasi), vol. 5, no. 4, pp. 624–630, 2021, doi: 10.29207/resti.v5i4.3184.
B. Widodo, H. Armanto, and E. Setyati, “Deteksi Pemakaian Helm Proyek Dengan Metode Convolutional Neural Network,” J. Intell. Syst. Comput., vol. 3, no. 1, pp. 23–29, 2021, [Online]. Available: https://jurnal.stts.edu/index.php/INSYST/article/view/157/83.
M. R. Ardiansyah, Y. Supit, and M. S. Said, “Sistem Vidi Komputer untuk Kalkulasi Kepadatan Kendaraan Menggunakan Algoritma Yolo,” J. Sist. Inf. dan Tek. Komput., vol. 7, no. 1, 2022, [Online]. Available: http://ejournal.catursakti.ac.id/index.php/simtek/article/view/123/138.
A. Lazaro, “Deteksi Jenis Kendaraan di Jalan Menggunakan OpenCV,” Institut Teknologi Sepuluh Nopember, 2017.
H. O. K. Sugianto, M. A. D. Widyadara, and A. B. Setiawan, “Implementation of Face Recognition for Attendance Using Yolo V3 Method,” Semin. Nas. Inov. Teknol., vol. 6, no. 2, pp. 50–55, 2022, [Online]. Available: https://proceeding.unpkediri.ac.id/index.php/inotek/article/view/2559.
J. W. Chen, W. J. Lin, H. J. Cheng, C. L. Hung, C. Y. Lin, and S. P. Chen, “A Smartphone-Based Application for Scale Pest Detection Using Multiple-Object Detection Methods,” Electron., vol. 10, no. 4, pp. 1–14, 2021, doi: 10.3390/electronics10040372.
Q. Aini, N. Lutfiani, H. Kusumah, and M. S. Zahran, “Deteksi dan Pengenalan Objek Dengan Model Machine Learning: Model YOLO,” CESS (Journal Comput. Eng. Syst. Sci., vol. 6, no. 2, pp. 192–199, 2021, doi: 10.24114/cess.v6i2.25840.
J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You Only Look Once: Unified, Real-Time Object Detection,” Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit., vol. 2016, pp. 779–788, 2016, doi: 10.1109/CVPR.2016.91.
A. N. Sugandi, B. Hartono, and K. Kunci, “Implementasi Pengolahan Citra pada Quadcopter untuk Deteksi Manusia Menggunakan Algoritma YOLO,” Pros. 13th Ind. Res. Work. Natl. Semin., pp. 13–14, 2022.
M. Lamane, M. Tabaa, and A. Klilou, “Classification of Targets Detected by mmWave Radar using YOLOv5,” Procedia Comput. Sci., vol. 203, pp. 426–431, 2022, doi: 10.1016/j.procs.2022.07.056.
A. Saffari, S. Y. Tan, M. Katanbaf, H. Saha, J. R. Smith, and S. Sarkar, “Battery-Free Camera Occupancy Detection System,” EMDL’21 Proc. 5th Int. Work. Embed. Mob. Deep Learn., pp. 13–18, 2021, [Online]. Available: https://dl.acm.org/doi/10.1145/3469116.3470013.
K. A. Baihaqi and C. Zonyfar, “Deteksi Lahan Pertanian Yang Terdampak Hama Tikus Menggunakan Yolo v5,” J. Inform., vol. 11, no. 02, pp. 1–9, 2022, [Online]. Available: https://journal.unsika.ac.id/index.php/syntax/article/view/7226/3496.
K. Harian, “Pengertian Dataset dan Jenis-jenisnya,” Kumparan.com, 2021. .
R. Imantiyar and D. H. Fudholi, “Kajian Pengaruh Dataset dan Bias Dataset terhadap Performa Akurasi Deteksi Objek,” PETIR (Jurnal Pengkaj. dan Penerapan Tek. Inform., vol. 14, no. 2, pp. 258–268, 2021, doi: 10.33322/petir.v14i2.1350.
P. Kowalczyk, J. Izydorczyk, and M. Szelest, “Evaluation Methodology for Object Detection and Tracking in Bounding Box Based Perception Modules,” Electron., vol. 11, no. 8, pp. 1–26, 2022, doi: 10.3390/electronics11081182.
R. A. Anggraini, G. Widagdo, A. S. Budi, and M. Qomaruddin, “Penerapan Data Mining Classification untuk Data Blogger Menggunakan Metode Naïve Bayes,” J. Sist. dan Teknol. Inf., vol. 7, no. 1, pp. 47–51, 2019, doi: 10.26418/justin.v7i1.30211.

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.