Abstract
As social media platforms increasingly serve, machine learning techniques are formulated with particular ontologies, which furnish invaluable resources. This qualitative literature review investigates the incorporation of ontology-driven machine learning methodologies for analysing public policy utilizing social media data. This review encompasses findings from scholarly research published between 2019 and 2024 that apply ontologies to enhance models' interpretation, precision, and flexibility across diverse sectors, including health, environment, economy, and culture. An integrated methodology is adopted to identify, select, and evaluate pertinent studies by scrutinizing elements such as genre ontology, machine learning, existing literature, and evaluation metrics. The findings indicate that the ontology-centric framework facilitates the extraction process and semantic analysis, ultimately contributing to a more nuanced comprehension of unstructured data. Nonetheless, obstacles persist in ontology development concerning capacity enhancement, data integrity, and ethical considerations. The review concludes with a discourse on the ramifications for policymakers and researchers who may leverage these insights to guide decision-making, and scholars are now urged to confront limitations and investigate novel platforms, metrics, and ethical frameworks. The review underscores the potential of ontology-driven machine learning as a formidable strategy in the advancement of policy research and social analysis.
References
A. Abtew, D. Demissie, and K. Kekeba, Ontology-Driven Machine Learning: A Review of applications in healthcare, finance, Natural Language Processing, and Image Analysis. 2023. doi: 10.21203/rs.3.rs-
/v1.
A. A. Kero, D. H. Demissie, and K. K. Tune, “An application of ontology driven machine learning model challenges for the classification of social media data: a systematic literature review,” Int. J. Sci. Rep., vol. 9, no. 9, pp. 299–303, Aug. 2023, doi: 10.18203/issn.2454-2156.IntJSciRep20232514.
J. Braga, J. L. R. Dias, and F. Regateiro, “A Machine Learning Ontology,” Oct. 20, 2020, Frenxiv. doi: 10.31226/osf.io/rc954.
S. K. Anand and S. Kumar, “Ontology-based soft computing and machine learning model for efficient retrieval,” Knowl. Inf. Syst., vol. 66, no. 2, pp. 1371–1402, Feb. 2024, doi: 10.1007/s10115-023-01990-8.
Ghidalia, “Combining Machine Learning and Ontology: A Systematic Literature Review,” arXiv.org, vol. abs/2401.07744, Jan. 2024, doi: 10.48550/arxiv.2401.07744.
S. Manzoor et al., “Ontology-Based Knowledge Representation in Robotic Systems: A Survey Oriented toward Applications,” Appl. Sci., vol. 11, no. 10, p. 4324, May 2021, doi: 10.3390/app11104324.
R. Nowrozy, K. Ahmed, and H. Wang, “GPT, Ontology, and CAABAC: A Tripartite Personalized Access Control Model Anchored by Compliance, Context and Attribute,” Mar. 13, 2024, arXiv: arXiv:2403.08264. doi: 10.48550/arXiv.2403.08264.
Rajendra and P. Pandey, “Developing an Optimized Semantic Knowledge Base for Enhanced Public Healthcare Systems (2023) |.” Accessed: Nov. 05, 2024. [Online]. Available: https://typeset.io/papers/developing-an-optimized-semantic-knowledge-base-for-enhanced-4k6gyef071
Narsis and Ouassila Labbani, “Objective-Driven Modular and Hybrid Approach Combining Machine Learning and Ontology,” SciSpace - Paper. Accessed: Nov. 05, 2024. [Online]. Available: https://typeset.io/papers/objective-driven-modular-and-hybrid-approach-combining-1un75hi8me
W. Wang, J. Chen, J. Wang, J. Chen, and Z. Gong, “Geography-aware inductive matrix completion for personalized point-of-interest recommendation in smart cities,” IEEE Internet Things J., vol. 7, no. 5, pp. 4361–4370, 2019, Accessed: Nov. 06, 2024. [Online]. Available: https://ieeexplore.ieee.org/abstract/document/8887261/
S. K. Shahzad, D. Ahmed, M. R. Naqvi, M. T. Mushtaq, M. W. Iqbal, and F. Munir, “Ontology driven smart health service integration,” Comput. Methods Programs Biomed., vol. 207, p. 106146, 2021, Accessed: Nov. 06, 2024. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0169260721002200
Plimbert, “Promoting policy evaluation across government: The contribution of the OECD recommendation to public policy evaluation,” SciSpace - Paper. Accessed: Nov. 05, 2024. [Online]. Available: https://typeset.io/papers/promoting-policy-evaluation-across-government-the-2hugj1xdaz
P. Cairney, “The politics of policy analysis: theoretical insights on real world problems,” J. Eur. Public Policy, vol. 30, no. 9, pp. 1820–1838, Sep. 2023, doi: 10.1080/13501763.2023.2221282.
F. Goter and S. Khenniche, “Évaluation des politiques publiques : vers une pratique intégrée au pilotage de l’action publique:,” Gest. Manag. Public, vol. Volume 10 / N° 3, no. 3, pp. 35–56, Feb. 2023, doi: 10.3917/gmp.103.0035.
A. Roziqin, S. Y. F. Mas’udi, and I. T. Sihidi, “An analysis of Indonesian government policies against COVID-19,” Public Adm. Policy, vol. 24, no. 1, pp. 92–107, May 2021, doi: 10.1108/PAP-08-2020-0039.
M. A. Hossin, J. Du, L. Mu, and I. O. Asante, “Big Data-Driven Public Policy Decisions: Transformation Toward Smart Governance,” Sage Open, vol. 13, no. 4, p. 21582440231215123, Oct. 2023, doi: 10.1177/21582440231215123.
W. N. Dunn, Public policy analysis: An integrated approach. Routledge, 2015. Accessed: Nov. 06, 2024. [Online]. Available: https://www.taylorfrancis.com/books/mono/10.4324/9781315663012/public-policy-analysis-william-dunn
John W. Seavey, Semra Aytur, and Robert J. McGrath, “Health Policy and Analysis,” SciSpace - Paper. Accessed: Nov. 06, 2024. [Online]. Available: https://typeset.io/papers/health-policy-and-analysis-1cr8ysqc
C. Salama and S. Picalarga, “Promoting policy evaluation across government: The contribution of the OECD recommendation to public policy evaluation,” Evaluation, vol. 30, no. 3, pp. 327–337, Jul. 2024, doi: 10.1177/13563890241234699.
K. Chao, M. N. I. Sarker, I. Ali, R. B. R. Firdaus, A. Azman, and M. M. Shaed, “Big data-driven public health policy making: Potential for the healthcare industry,” Heliyon, vol. 9, no. 9, p. e19681, Sep. 2023, doi: 10.1016/j.heliyon.2023.e19681.
M. Safaei and J. Longo, “The End of the Policy Analyst? Testing the Capability of Artificial Intelligence to Generate Plausible, Persuasive, and Useful Policy Analysis,” Digit. Gov. Res. Pract., vol. 5, no. 1, pp. 1–35, Mar. 2024, doi: 10.1145/3604570.
P. Galetsi, K. Katsaliaki, and S. Kumar, “The medical and societal impact of big data analytics and artificial intelligence applications in combating pandemics: A review focused on Covid-19,” Soc. Sci. Med., vol. 301, p. 114973, May 2022, doi: 10.1016/j.socscimed.2022.114973.
D. Boyd and K. Crawford, “CRITICAL QUESTIONS FOR BIG DATA: Provocations for a cultural, technological, and scholarly phenomenon,” Inf. Commun. Soc., vol. 15, no. 5, pp. 662–679, Jun. 2012, doi: 10.1080/1369118X.2012.678878.
A. Veglis, T. Saridou, K. Panagiotidis, C. Karypidou, and E. Kotenidis, “Applications of Big Data in Media Organizations,” Soc. Sci., vol. 11, no. 9, 2022, doi: 10.3390/socsci11090414.
E. Bardach and E. M. Patashnik, A practical guide for policy analysis: The eightfold path to more effective problem solving. CQ press, 2023.
Yuxue Yang, and Xuejiao Tan, “What are the core concerns of policy analysis? A multidisciplinary investigation based on in-depth bibliometric analysis,” Humanit. Soc. Sci. Commun., vol. 10, no. 1, May 2023, doi: 10.1057/s41599-023-01703-0.
A. Kaplan and M. Haenlein, “Rulers of the world, unite! The challenges and opportunities of artificial intelligence,” Bus. Horiz., vol. 63, no. 1, pp. 37–50, 2020, Accessed: Nov. 06, 2024. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0007681319301260
A. Jungherr, O. Posegga, and J. An, “Discursive Power in Contemporary Media Systems: A Comparative Framework,” Int. J. Press., vol. 24, no. 4, pp. 404–425, Oct. 2019, doi: 10.1177/1940161219841543.
L. Zhao and S.-W. Lee, “Integrating Ontology-Based Approaches with Deep Learning Models for Fine-Grained Sentiment Analysis,” Comput. Mater. Contin., vol. 81, no. 1, pp. 1855–1877, Oct. 2024, doi: 10.32604/cmc.2024.056215.
M. Calautti, D. Duranti, and P. Giorgini, “Machine Learning-Augmented Ontology-Based Data Access for Renewable Energy Data,” Oct. 16, 2024, arXiv: arXiv:2410.12734. doi: 10.48550/arXiv.2410.12734.
A. Sharma and S. Kumar, “Machine learning and ontology-based novel semantic document indexing for information retrieval,” Comput. Ind. Eng., vol. 176, p. 108940, Feb. 2023, doi: 10.1016/j.cie.2022.108940.
A. R. Durmaz, A. Thomas, L. Mishra, R. N. Murthy, and T. Straub, “An ontology-based text mining dataset for extraction of process-structure-property entities,” Sci. Data, vol. 11, no. 1, p. 1112, Oct. 2024, doi: 10.1038/s41597-024-03926-5.
J. A. Benítez-Andrades, M. T. García-Ordás, M. Russo, A. Sakor, L. D. Fernandes Rotger, and M.-E. Vidal, “Empowering machine learning models with contextual knowledge for enhancing the detection of eating disorders in social media posts,” Semantic Web, vol. 14, no. 5, pp. 873–892, May 2023, doi: 10.3233/SW-223269.
S. V. Mahadevkar, S. Patil, K. Kotecha, L. W. Soong, and T. Choudhury, “Exploring AI-driven approaches for unstructured document analysis and future horizons,” J. Big Data, vol. 11, no. 1, p. 92, Jul. 2024, doi: 10.1186/s40537-024-00948-z.
M. Sivakami and M. Thangaraj, “Ontology Based Text Classifier for Information Extraction from Coronavirus Literature,” Trends Sci., vol. 18, no. 24, p. 47, Nov. 2021, doi: 10.48048/tis.2021.47.
D. Ruths and J. Pfeffer, “Social media for large studies of behavior,” Science, vol. 346, no. 6213, pp. 1063–1064, Nov. 2014, doi: 10.1126/science.346.6213.1063.
M. R. Gomar, “Analyzing The Influence of Social Media Posts on Government Policy Adoption in Papua City,” Eduvest - J. Univers. Stud., vol. 4, no. 3, pp. 925–939, Mar. 2024, doi: 10.59188/eduvest.v4i3.1071.
A. Sarjito, “The Influence of Social Media on Public Administration,” J. Terap. Pemerintah. MINANGKABAU, vol. 3, no. 2, pp. 106–117, Nov. 2023, doi: 10.33701/jtpm.v3i2.3378.
S. Vydra and J. Kantorowicz, “Tracing Policy-relevant Information in Social Media: The Case of Twitter before and during the COVID-19 Crisis,” Stat. Polit. Policy, vol. 12, no. 1, pp. 87–127, Jun. 2021, doi: 10.1515/spp-2020-0013.
Philippine Institute for Development Studies, J. F. Vizmanos, S. Siar, J. R. Albert, J. L. Sarmiento, and A. Hernandez, “Like, Comment, and Share: Analyzing Public Sentiments of Government Policies in Social Media,” Philippine Institute for Development Studies, Dec. 2023. doi: 10.62986/dp2023.33.
C. Zachlod, O. Samuel, A. Ochsner, and S. Werthmüller, “Analytics of social media data – State of characteristics and application,” J. Bus. Res., vol. 144, pp. 1064–1076, May 2022, doi: 10.1016/j.jbusres.2022.02.016.
E. H. Park and V. C. Storey, “Emotion Ontology Studies: A Framework for Expressing Feelings Digitally and its Application to Sentiment Analysis,” ACM Comput. Surv., vol. 55, no. 9, pp. 1–38, Sep. 2023, doi: 10.1145/3555719.
L. Spiliotopoulou, “Analysis & design of an opinion mining system for policy making in e-participation,” 2019, Accessed: Nov. 06, 2024. [Online]. Available: https://hellanicus.lib.aegean.gr/handle/11610/19869
C. Nyelele, C. Keske, M. G. Chung, H. Guo, and B. N. Egoh, “Using social media data and machine learning to map recreational ecosystem services,” Ecol. Indic., vol. 154, p. 110606, 2023, Accessed: Nov. 06, 2024. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S1470160X23007483
S. Jain, S. Dalal, and M. Dave, “An Ontology for Social Media Data Analysis,” in Semantic Intelligence, vol. 964, S. Jain, S. Groppe, and B. K. Bhargava, Eds., in Lecture Notes in Electrical Engineering, vol. 964. , Singapore: Springer Nature Singapore, 2023, pp. 77–87. doi: 10.1007/978-981-19-7126-6_7.
T. Gokcimen and B. Das, “Exploring Climate Change Discourse on Social Media and Blogs Using a Topic Modeling Analysis,” Heliyon, 2024, Accessed: Nov. 06, 2024. [Online]. Available: https://www.cell.com/heliyon/fulltext/S2405-8440(24)08495-0
N. Alahmari, R. Mehmood, A. Alzahrani, T. Yigitcanlar, and J. M. Corchado, “Autonomous and Sustainable Service economies: Data-Driven optimization of Design and Operations through Discovery of Multi-perspective parameters,” Sustainability, vol. 15, no. 22, p. 16003, 2023, Accessed: Nov. 06, 2024. [Online]. Available: https://www.mdpi.com/2071-1050/15/22/16003
P. Wongthongtham and B. A. Salih, “Ontology-based approach for identifying the credibility domain in social Big Data,” J. Organ. Comput. Electron. Commer., vol. 28, no. 4, pp. 354–377, Oct. 2018, doi: 10.1080/10919392.2018.1517481.
J. A. García-Díaz, M. Cánovas-García, and R. Valencia-García, “Ontology-driven aspect-based sentiment analysis classification: An infodemiological case study regarding infectious diseases in Latin America,” Future Gener. Comput. Syst., vol. 112, pp. 641–657, 2020, Accessed: Nov. 06, 2024. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0167739X2030892X
U. Etudo and V. Y. Yoon, “Ontology-Based Information Extraction for Labeling Radical Online Content Using Distant Supervision,” Inf. Syst. Res., vol. 35, no. 1, pp. 203–225, Mar. 2024, doi: 10.1287/isre.2023.1223.
P. Delgoshaei, M. Heidarinejad, and M. A. Austin, “Combined ontology-driven and machine learning approach to monitoring of building energy consumption,” in 2018 Building Performance Modeling Conference and SimBuild, Chicago, IL, 2018, pp. 667–674. Accessed: Nov. 06, 2024. [Online]. Available: https://publications.ibpsa.org/proceedings/simbuild/2018/papers/simbuild2018_C092.pdf
E. Joe, M. Ogharandukun, U. Felix, and C. N. Ogbonna, “Ontology-Driven Analytic Models for Pension Management and Decision Support System,” J. Comput. Commun., vol. 11, no. 10, pp. 101–119, 2023, Accessed: Nov. 06, 2024. [Online]. Available: https://www.scirp.org/journal/paperinformation?paperid=128554
N. Evain, E. Exposito, M. L. Gueye, and P. Arnould, “Ontology-driven approach for competency-oriented and student-centered engineering education,” in 2024 IEEE Global Engineering Education Conference (EDUCON), IEEE, 2024, pp. 1–10. Accessed: Nov. 06, 2024. [Online]. Available: https://ieeexplore.ieee.org/abstract/document/10578793/
R. Bavaresco, Y. Ren, J. Barbosa, and G. P. Li, “An ontology-based framework for worker’s health reasoning enabled by machine learning,” Comput. Ind. Eng., p. 110310, 2024, Accessed: Nov. 06, 2024. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0360835224004315
A. A. Adegun, J. V. Fonou-Dombeu, S. Viriri, and J. Odindi, “Ontology-Based Deep Learning Model for Object Detection and Image Classification in Smart City Concepts,” Smart Cities, vol. 7, no. 4, pp. 2182–2207, 2024, Accessed: Nov. 06, 2024. [Online]. Available: https://www.mdpi.com/2624-6511/7/4/86
A. Kumar and A. Joshi, “Ontology Driven Sentiment Analysis on Social Web for Government Intelligence,” in Proceedings of the Special Collection on eGovernment Innovations in India, New Delhi AA India: ACM, Mar. 2017, pp. 134–139. doi: 10.1145/3055219.3055229.
A. Bani-Hani, M. Majdalawieh, and F. Obeidat, “The creation of an Arabic emotion ontology based on e-motive,” Procedia Comput. Sci., vol. 109, pp. 1053–1059, 2017, Accessed: Nov. 06, 2024. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S1877050917310529
S. F. Pileggi and S. A. Lamia, “Climate change timeline: an ontology to tell the story so far,” IEEE Access, vol. 8, pp. 65294–65312, 2020, Accessed: Nov. 06, 2024. [Online]. Available: https://ieeexplore.ieee.org/abstract/document/9055012/
B. P. Bhuyan, R. Tomar, and A. R. Cherif, “A systematic review of knowledge representation techniques in smart agriculture (Urban),” Sustainability, vol. 14, no. 22, p. 15249, 2022, Accessed: Nov. 06, 2024. [Online]. Available: https://www.mdpi.com/2071-1050/14/22/15249
G. Michalakidis, Appreciation of structured and unstructured content to aid decision making-from Web scraping to ontologies and data dictionaries in healthcare. University of Surrey (United Kingdom), 2016. Accessed: Nov. 06, 2024. [Online]. Available: https://search.proquest.com/openview/b22ddfc40f55cc6820a43d05030317d1/1?pq-origsite=gscholar&cbl=2026366
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.